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Abstract—An accurate yield evaluation is essential in selecting
redundancy allocation and testing strategies for memories. Yield
evaluation can resolve the many issues revolving around cost-
effective built-in self-test (BIST) and automatic test equipment
(ATE)-based solutions for a higher test transparency. In this
paper, two yield-calculation methodologies for SRAM arrays are
proposed. General yield expressions for VLSI chips are initially
presented. The regular and repetitive structure of an SRAM array
is exploited, and substantial yield improvements can be achieved
by the introduction of redundancy. Two repair yield-evaluation
methods for one-dimensional redundant memory arrays are in-
troduced and compared for ATE application. The first method
is based on the sum of the probabilities of all repairable fault
patterns; the second method is based on Markov modeling. Using
industrial data, it is shown that these methods are applicable to
ATE usage under different conditions of defect rate in the possible
defects. Different features of the proposed methods are discussed.

Index Terms—Automatic test equipment (ATE), manufacturing,
Markov modeling, redundancy, SRAM, yield.

I. INTRODUCTION

MANUFACTURING of chips requires accurate monitor-
ing of the different processes for preserving the quality

of the shipped product. An accurate estimate of the yield (i.e.,
the percentage of working chips in a production batch) is an
essential feature in manufacturing and selecting appropriate
repair strategies (if required). This is applicable to memories;
starting from the expected yield, different strategies can be
employed for spare allocation and related testing processes. For
redundancy allocation, an expected high yield can be used to
justify a small number of spare rows/columns. To maintain the
defect level of the shipped product at an acceptable value, addi-
tional redundancy may be required at design level. Furthermore,
a yield estimate impacts the operation of testers such as an
automatic test equipment (ATE). Memory testers are designed
for enhancing a parallel operation to exploit modularity for a
high throughput at low test time. Currently, an ATE can test up
to 128 DUT simultaneously to achieve an operational speed of
up to 500 MHz.
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With the dramatic increase in memory size, efficient solu-
tions are required to maintain an acceptable production yield
[1]. Moreover, testing of embedded memories (SRAM and
DRAM) incurs in additional costs due to the large test time
and ATE performance (such as for “at speed” testing). To
lower test costs and to allow tester designers to meet memory
requirements, discrete Fourier transform (DFT)/built-in self-
test (BIST) and built-in self-repair (BISR) solutions have been
proposed [2]–[5]. Yield evaluation can be used in selecting an
appropriate testing strategy; when the expected yield is high,
BIST or BISR solutions may be preferred; otherwise, more
expensive ATE solutions are available. Generally, the former
technique leads to a low test transparency, i.e., the fraction of
defects not detected by testing is higher. However, the reduction
in test/repair costs can justify the use of BISR, provided a
higher yield is expected. An expected low yield may require the
use of purely ATE-based test and repair techniques. Although
they are more expensive, in most cases, they can guarantee a
lower defect level of the shipped product; high defect levels
are expected in the earliest stages of manufacturing, so a yield
estimate should be pursued prior to utilizing an ATE. Yield es-
timate for integrated circuits (IC) has been extensively studied;
the initial work of [6] has recognized that the yield of an IC
does not follow the simple Poisson statistics and has introduced
the use of compound Poisson statistics. The use of compound
Poisson statistics has been then further studied and improved
in [7]–[9]. Moreover, the so-called clustering effect has been
extensively analyzed with respect to the sizes of the cluster
[10]–[12], [14]. In [15], a unified model has been provided. The
yield estimate of a repairable memory stems from the study of
IC yield and has been addressed in [9], [13], [14], [17], and [22].
Memory repair has been proved to be an NP-hard problem [19].
Many algorithms have been proposed for optimizing spare row
and column allocations in a RAM [20], [21], [23], [24]. Most of
these repair algorithms are based on greedy heuristics, because
they are advantageous in terms of computation time.

The goal of this paper is to introduce and analyze two
different methods for estimating the yield of SRAMs while
considering clustering effects and the benefits of a repair
mechanism. Different from most of the previous works, both
proposed methods calculate the yield by considering the SRAM
repair solutions. This improves the level of accuracy compared
with the traditional yield methodologies, which either consider
repair operations based on probabilistic assumptions or ignore
the effect of overlapping defects in the redundancy allocation.
To reduce the complexity of the allocation algorithm, only
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one-dimensional redundancy (spare rows) has been consid-
ered in this paper. The first proposed approach [25] is a fast
industrial-based method for embedded SRAMs; it computes
the yield by considering design features of so-called compiler-
based embedded SRAMs. This is an approximate approach
(hereafter also referred to as “method A”) and is the basis of
the compiler-based array yield analysis (CAYA) tool described
in [25]. The second approach (hereafter also referred to as
“method B”) provides a highly accurate yield estimate through
a Markov-based analysis. Previous works on Markov-based
analysis can be found in [16]–[18]. As this approach provides
a high level of accuracy, the yield found by method B has been
used as a reference to evaluate the industrial-based approach
represented by method A. The effectiveness and accuracy of
the two proposed methods are then compared with respect to
the industrial design data for the defects.

This paper is organized as follows. Section II briefly presents
yield-modeling issues. In Section III, the two proposed methods
are described in detail. In Section IV, both of these methods are
compared. Finally, conclusions are drawn in Section V.

II. GLOBAL YIELD MODEL

The evaluation of the effects of manufacturing defects on
an IC is related to the defect density (given by D), the extent
by which defects are clustered (parameterized by α), and the
critical area (denoted as A) exposed to the defects [26], [27].
The expected average number of faults on a chip is given by
λ0 = AD. At manufacturing, defects can be categorized into
two main classes [29].

1) Pinhole Defects: These are defects in which the size is not
important, such as defects that cause dielectric pinholes of
junction leakage. These defects are rather easy to model.

2) Photolithographic defects: These are defects that are com-
parable in size with photolithographic patterns. In this
case, defect sensitivity depends on the defect size.

The feature of a critical area is related to the presence of a
defect as a possibly fatal event (i.e., a fault); hence, the size of
the circuit pattern in a chip is used to establish whether a defect
can cause a fault. In [26] and [27], they have been analyzed
through a function fault probability kernel K(x), which is zero
when a defect does not cause a fault and one otherwise. The
critical area of a circuit is, then, the product of the actual area
and the integral of the product of the defect size distribution and
the kernel function [26], [27]. The integral is replaced in many
cases by a so-called proportionality function. Thus, the critical
area is assumed to be simply proportional to the actual area by
ignoring any detailed spatial interaction [14]. For manufactur-
ing, the critical area of an SRAM is commonly calculated from
the layout using an extraction tool, such as those based on shape
expansion, or a Monte Carlo simulation [25], [28].

Structural defects (whose number is denoted by n) and their
expected density can be obtained from the manufacturing-line
data. Functional faults describe the effect of defects on memory
cells, word/bit lines, and peripheral circuitry. Therefore, the
number of defects in an SRAM can be calculated by relating
defects to the functional faults. Consider the six functional
faults as reported in Table I and acquired through industrial

TABLE I
FUNCTIONAL FAULTS FOR SRAM ARRAYS

TABLE II
FAULT TYPES PERCENTAGES

practice [25]. The number of faults present in an SRAM can be
calculated as follows. Let Λ be a (6 × 1) matrix representing
the average number of functional faults; let A be a (6 × n)
critical area matrix, with an entry Ai,j denoting the critical area
of a functional fault type j in a critical area i; and let D be a
(n× 1) defect-density matrix for n structural defects. Using the
defect-density matrix (obtained from the manufacturing line),
the number of faults (of different types) is given as

ΛT = (λck, λsc, λhp, λvp, λrow, λcol) (1)

where ck, sc, hp, vp, row, and col are the functional fault types
as described in Table I, and

Λ = AD. (2)

Let λ0 be the sum of the average number of faults of
each type in the SRAM. From the analysis performed on an
industrial embedded SRAM [25], the values of Table II have
been computed for each type of fault. Given λ0, the probability
of having k faults on a chip can be approximated by the discrete
Poisson distribution of a random variable X = k [9], [13]:

P{X = k} =
e−λ0λk

0

k!
. (3)

It can be proved that the mean and variance of (3) are both
equal to λ0. The yield is defined as the probability of having no
fault on a chip. If the chip has no redundancy, the yield is given
by (3), which is computed for k = 0, i.e.,

Y = P{X = 0} = e−λ0 . (4)
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However, as observed from the experimental data, the mean
value and variance of the fault distribution do not match λ0,
as predicted by a Poisson distribution [9]. This is caused by
the effect of a nonconstant distribution of the defect density
on the wafer, i.e., the value of λ0 varies for different chips.
This issue is known as the clustering effect. Therefore, a mixed
Poisson distribution is applied using a gamma distribution as
mixing function. The result is modeled by a Polya–Eggenberger
distribution as

P{X = k} =
Γ(k + α)

(
λ0
α

)k

k!Γ(α)
(
1 +

(
λ0
α

))α+k
. (5)

The mean and the variance of this distribution function
are given by E(X = k) = λ0 and Var(X) = λ0 · (1 + λ0/α),
respectively. Therefore, the yield for a nonredundant chip is
derived from (5) for k = 0 as

Y = P{X = 0} =
(

1 +
λ0

α

)−α

. (6)

This is generally known as the negative-binomial yield model.
In (6), α represents the clustering effect of the mean fault
density λ0 on different chips; a value of α, which has been
widely adopted in industry, is ≈ 2. As

lim
α→∞

(
1 +

λ0

α

)−α

= e−λ0

this reduces to (4). When α→ ∞, the values of λ0 for different
chips are totally uncorrelated, and therefore, the probability
distribution function of λ [i.e., f(λ)] can be considered as a
Dirac pulse on λ0. Thus, f(λ) = δ(λ− λ0).

III. YIELD MODELS

In this section, the description of the two proposed yield
models is reported. The considered models are based on two
different approaches: The first approach [25] (method A) re-
duces the computational complexity by introducing some ap-
proximations, while the second approach (method B) provides
accurate results.

A. Method A

A fault pattern is defined as a vector FP = (i1, i2, . . . , iF ),
where ik is the number of type-k faults. The concept of fault
pattern (or FP) has been introduced in [9] and [22]. Given the
average number of failures occurring on a chip, λ0 can be split
into a set of different functional faults, i.e., the value λ0 can be
seen as the sum of λi, as the distinct average occurrences of F
possible fault types (with i = 1, 2, . . . , F ), i.e.,

λ0 =
∑

i=1,F

λi. (7)

By considering a set of fault types for the SRAM (as de-
scribed previously in Section II), (7) can be written as

λ0 = λsc + λvp + λhp + λrow + λcol + λck. (8)

Method A is consist of two steps.

1) The first step evaluates the yield as the sum of the
probabilities of all repairable fault patterns on the chip
(by considering a Poisson distribution of each fault).

2) The second step considers the clustering effect by per-
forming the inversion of the results obtained in the first
step and using λr (as the average number of faults left un-
repaired) into a negative-binomial distribution function.

In the first step, the yield is calculated as the sum of the
probabilities of all repairable fault patterns (based on repairable
faults or RFs) of a chip, each occurring with a Poisson proba-
bility distribution. Using the FPs, the yield of a repairable chip
is, therefore, the probability of having all RFs. So, if the FPs are
assumed to be disjoint, then

Y =
∑
RF

Pr{FPi}. (9)

Therefore, the proposed analysis consists of estimating the
yield that is attainable by using an exhaustive repair algorithm.
Assuming a Poisson distribution for k faults of type i, then

Pi(k) =
e−λiλ−k

i

k!
. (10)

From (9), the yield after repairing the SRAM using the
provided redundancy (without considering the clustering effect)
is given by

Yr = Pck(0)
∑
CF

Psc(i)Pvp(j)Php(k)Prow(l)Pcol(m). (11)

In (11), Yr is the yield after repairing (i+ j + k + l +m)
faults of different types. Repair effectively translates into a
process by which most (in some cases all) faults can be cor-
rected. Let the number of faults left unrepaired be given by λr

and Yp denote the so-called perfect yield, i.e., the probability
that there is no fault left unrepaired. As the average number of
faults to be repaired is λ0, then

Yp = P (0) = (1 + λ0/α)−α. (12)

Starting from (12), the second step of method A introduces
the clustering effect that was not considered in the computation
of Yr [by (11)]. λr can be considered as the average number
of faults left unrepaired after the first step; this is obtained
by inverting the Poisson expression computed for k = 0, i.e.,
Yr = e−λr . By substituting the computed λr into (12) and by
considering the clustering effect, the final yield is given by

Yf = (1 + λr/α)−α. (13)

B. Method B

Similar to method A, method B is made of two consecutive
steps to estimate the memory yield. The SRAM is again mod-
eled by utilizing a given row redundancy and a probabilistic
characterization of the faults. As for method A, the clustering
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Fig. 1. Markov chain for spare rows case.

effect is also taken into account. Method B consists of
two steps.

1) In the first step, the yield after repair is computed by
solving a Markovian model.

2) In the second step, the previously obtained results are
integrated with the gamma distribution function to obtain
the yield (including the clustering effect).

Consider in more detail these two steps. The repair process
can be described as a series of states representing the different
configurations of the memory, depending on the number of
faults that have been repaired. In [16], an estimate of the yield
is found by analyzing a finite-state Markov chain (representing
all possible chip repair states). The case of a memory array with
only spare rows can be considered as an M out of N reliability
problem, i.e.,M elements out ofN must be operative. This type
of problem is typically modeled using Markov chains; thus,
the repair process can also be modeled as a continuous time
Markov chain (CTMC).

The model shown in Fig. 1 has M + 2 states, where M is
the number of available spare rows, and two additional states
represent the initial “good chip” state (i.e., G) and the fail
state (i.e., F ). Therefore, each state corresponds to the level of
redundancy currently available in the memory. The occurrence
of a fault causes a state transition to the corresponding memory
configuration after (possibly) performing a repair operation.
Thus, the proposed repair algorithm processes faults one at a
time. It is straightforward to prove that, if only spare rows are
provided (as in the considered case), a sequential algorithm is
also exhaustive.

The transition rates for the Markov chain model are shown
in Table III. The same set of possible faults as in Table I has
been considered. However, the values of the fault rates (marked
with an asterisk in Table III) must be divided by either the
number of columns or rows (or their product). As all the faults
are assumed to be independent, their weighted probabilities are
summed when characterizing a transition rate. In Table III, sr
denotes the number of spare rows, nc denotes the number of
columns, and nr denotes the number of rows. For the terms
related to vertical pair faults in Table III, consider

λ′vp(i, i+1) =ncnrλ
∗
vp

[
1−

(
i

nr

i−1
nr−1

+
nr−i
nr

nr−i−1
nr−1

)]

λ′vp(i, i+2) =ncnrλ
∗
vp

(
nr−i
nr

· nr−i−1
nr−1

)
. (14)

To understand the transition rates reported in Table III, the
following general rule can be used: For an edge between two

TABLE III
DEFECT INTENSITIES

states, its transition rate is the weighted sum of λ∗ of all
possible faults that can cause that transition, and the weight
is the number of elements that are exposed to that fault. As
an example, consider the transition rate λG,1 from a state with
no allocated spare row (G) to a state with only one allocated
spare row. In this case, the transition rate is given by the sum of
three terms.

1) ncnrλ
∗
sc: This is the probability of having a single cell

fault in any of the nc × nr cells of the array.
2) nrλ

∗
row: This is the probability of having a row fault in

any of the nr rows of the array.
3) ncnrλ

∗
hp: This is the probability of having a horizontal

cell fault in any of the nc × nr cells of the array; this is
not dependent on the location of the faulty pair of cells
within a row, because repair utilizes an entire row.

The case in which vertical pair faults contribute to a transition
rate is more complex. Equation (14) defines the probability of
increasing the number of allocated rows by one (λ′vp(i, i+ 1))
or two (λ′vp(i, i+ 2)) spares, respectively. For λ′vp(i, i+ 2),
this rate is given by the product of the vertical pair fault rate
of each possible cell (ncnrλ

∗
vp) and the probability that the pair

of affected rows was not already repaired [(nr − i/nr) · (nr −
i− 1/nr − 1)]. Else, the considered vertical pair may increase
the number of allocated rows by at most one. For λ′vp(i, i+ 1),
this rate is given by the product of the vertical pair fault rate
of each possible cell (ncnrλ

∗
vp) and the probability that the

repair of this fault increases the allocation of spare rows by
one. This last rate is given by the probability of not utilizing
either a pair of adjacent rows already affected by the fault or a
pair in which neither row is already affected ({1 − [(i/nr) (i−
1/nr − 1)+(nr − i/nr) (nr − i− 1/nr − 1)]}).

To solve the proposed Markov model, all transitions are
assumed to be slow, i.e., the transitions occur with an expo-
nential probability density function, and the rates (λij) are
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constant during the simulation time. The CTMC is then solved
by computing the solution of the following set of differential
equations:

P ′(λ) = P (λ)A (15)

where P (λ) is a vector whose elements are the probabilities
of being in a state (G, 1, 2, . . . ,M, F ), and A is the so-called
generating matrix whose elements are the transitions’ rates

A =



λ11 λ12 . . .
λ21 λ22 . . .

...
...

. . .


 .

The numerical solution of (15) is obtained by considering its
solution as

P (λ) = P (0)e(Aλ).

For ∆λ� 1, the above equation can be written as

P (∆λ) = P (0)(I −A∆λ)

and therefore, in general, for any given λ

P (λ+ ∆λ) = P (λ)(I −A∆λ). (16)

Equation (16) can be solved numerically (albeit this approach
requires a matrix multiplication at each step), and the yield after
repair is calculated as the probability of not being in the fail
state (F state).

In the second step of the proposed method, the numerical
integration with the gamma distribution function is required.
The actual yield (inclusive of the clustering effect) is thus
obtained, i.e.,

Yt(λ0, α) =

∞∫
0

Y (λ) · g(λ, λ0, α)dλ �

=
n=large∑

n=0

Y (n∆λ) · g(n∆λ, λ0, α)∆λ.

(17)

g(λ, λ0, α) is the gamma probability distribution function, and
its general definition is given in [30] as

g(x) = γxb−1e−cxU(x) (18)

where γ = [cb/Γ(b)], U(x) is the step function, b and c are
positive numbers, and Γ() is the gamma function. The gamma
function is defined as

Γ(b+ 1) =

∞∫
0

ybe−ydy

with b > −1. Γ() is also referred to as the generalized factorial,
because Γ(b+ 1) = bΓ(b) [if b is an integer, Γ(b+ 1) = b!,
Γ(1) = 1].

As reported in [14], (18) is used to weight the clustering
effect in the yield analysis by assuming, for the parameters x, c,
b, the following values: x = λ, c = (α/λ0); finally, b = α [9],
[14]. Therefore

g(λ, λ0, α) =
αα

λα
0 · Γ(α)

λα−1e−
α

λ0
λ.

The numerical formulation of the actual yield in (17) is then

Yt(λ0, α) =
n=large∑

n=0

Y (n∆λ) · αα

λα
0 · Γ(α)

λα−1e−
α

λ0
n∆λ∆λ.

(19)
The numerical solution of the first and second steps has

been performed by Matlab simulation [31]. The computational
complexity of these steps in the proposed method is dependent
on the selected simulation step (given by ∆λ).

IV. COMPARISON

In this section, a comparison of the yield estimates obtained
by the two proposed methods is provided. In summary, the
proposed methods are described in the following:

1) Method A: Fault pattern (step 1) and inversion approxi-
mated solution (step 2);

2) Method B: Markov model (step 1) and numerical gamma-
function integration (step 2).

Both methods consist of two steps. The first step calculates
the yield by assuming a Poisson distributed failure probability,
and the second step introduces suitable modifications to the
values obtained in the first step to take into account the clus-
tering effect. The two methodologies differ in many aspects.
Method B relies on the dynamic evolution of a repair algorithm,
while method A is based on a static probabilistic analysis. For
the considered case, the presence of only spare rows implies
that the sequential algorithm used in the Markov chain is
exhaustive, and therefore, the results are comparable to those
obtained by method A. However, when both spare columns and
rows are present, method B is more flexible to allow different
repair algorithms in the yield evaluation. For example, a greedy
algorithm could be evaluated with method B as an efficient
alternative in terms of performance.

Also, the two methods differ in execution by considering
the memory array size and aspect ratio when computing the
final yield. Both methods use fault data obtained industrially
by critical area analysis (whose values are reported in Table II).
These data depend on the size and aspect ratio of the considered
memory array and are applicable for all the configurations of
the reported memory array (1024 × 512, 1024 × 1024, and
2048 × 1024). Other than the fault data, method A does not
take into further account issues such as size and aspect ratio.
Method B is based on parametric fault rates (found by dividing
the values in Table III by the number of rows, columns, or
their product as applicable) and can be used to accurately
consider actual sizes and aspect ratios; thus, it can be extended
to different array configurations.
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The two proposed methodologies are hereafter compared
with respect to complexity and accuracy. As for the computa-
tional complexity, let F be the number of possible fault types
[as in (7)] and sr be the number of available spare rows. The
complexity of the first step of method A is given by O(sF

r ).
For a given number of faults and available spare rows, the
exhaustive algorithm from which method A is based searches
whether, for each possible fault, there is a repair configuration
permitted by the available spare rows. By also considering the
clustering effect, the computational complexity of method A
does not increase because the algorithm only needs to compute
two more operations. Method B instead is based on matrix
multiplications to solve (15) for the Markovian model. The
number of matrix multiplications to solve (16) is related to
the required accuracy (which is higher for lower values of the
execution step ∆λ) and the maximum value of the average fault
number λ0. Given λ0 and an execution step ∆λ and nmax =
(λ0/∆λ), then the computational complexity is O(nmax · s3r ).
Similarly, the computation complexity of the second step is
related to the solution of (17). Thus, it requires additional
O(n2

max) operations on the previously computed yield after
repair.

As for the accuracy of the proposed two methods, two
features must be considered. For the first step, as previously
mentioned, method B can be reliably used for evaluating arrays
of different size and aspect ratio. Moreover, it provides an eval-
uation over a more accurate set of possible fault patterns than
method A. Method A does not consider possible overlaps of the
same types of faults; for example, neither two single cell faults
on the same row nor two vertical pairs overlapping on a row are
taken into account. As for the second step, method B introduces
a higher level of accuracy with the gamma-function integration
because this is more suitable in evaluating the clustering effect
than the inversion-based approach. As described previously,
this results in a higher computational complexity.

In the remainder of this section, the results of the Matlab-
based simulations [31] to compare the two methods are pre-
sented. In particular, the two methods have been compared in
both steps 1 and 2 by calculating the yield for differently sized
RAM arrays. The chosen sizes are 0.5 Mbit (1024 × 512),
1 Mbit (1024 × 1024), and 2 Mbit (2048 × 1024). For each
of these memory arrays, redundancies of zero, one, two, four,
and eight spare rows have been considered.

From the reported values, it can be observed that the first
steps of the considered methods give close results for small
values of λ0 (Tables IV–VI). The values of λ0 reported in the
tables have been chosen according to the values of the defect
density in manufacturing lines of a mature industrial process.
The plot reported in Fig. 2 shows that yield estimates overlap
for a wide range of λ0. In particular, in this plot, simulation
results are shown for a 1024 × 1024 memory array by varying
the average fault rate λ0 from 0 to 15 with a step ∆λ = 10−3.

The results of step 2 in both methods are compared in
Tables VII–IX. These tables show that the yield estimates,
which now take into account the clustering effect, are still very
close for a small λ0. However, the effect of the approxima-
tion introduced in the second step of method A is evident at
higher values. This can be clearly observed in Fig. 3 for a

TABLE IV
ARRAY SIZE 0.5 M (1024 ROWS 512 COLUMNS) AND λ0 = 0.1 FOR STEP 1

TABLE V
ARRAY SIZE 1 M (1024 ROWS 1024 COLUMNS) AND λ0 = 0.2 FOR STEP 1

TABLE VI
ARRAY SIZE 2 M (2048 ROWS 1024 COLUMNS) AND λ0 = 0.4 FOR STEP 1

Fig. 2. Step 1: A yield comparison varying λ0 for a 1024 × 1024 memory
array.

1-M SRAM array (1024 × 1024). For higher values of λ0,
the yield calculated by method A tends to be underestimated.
For a new manufacturing line, the yield is likely to be very
low because the process is not yet finely tuned. Thus, it is
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TABLE VII
ARRAY SIZE 0.5 M (1024 ROWS 512 COLUMNS) AND λ0 = 0.1 FOR STEP 2

TABLE VIII
ARRAY SIZE 1 M (1024 ROWS 1024 COLUMNS) AND λ0 = 0.2 FOR STEP 2

TABLE IX
ARRAY SIZE 2 M (2048 ROWS 1024 COLUMNS) AND λ0 = 0.4 FOR STEP 2

worth considering higher values of λ0 at the early stages of
the manufacturing process; as an example, Table X shows the
values of the yield computed for an average of four defects
per array.

V. CONCLUSION

In this paper, two methods for calculating the yield of re-
pairable RAM arrays have been proposed and compared. The
analyzed methods have been chosen to be representatives of
two different approaches. Method A provides the basis of the
CAYA tool described in [25]. It is simple, and its computation
is faster, but it is based on an approximation. Method B is more
complex; its computational complexity is higher, but it is more
flexible and accurate.

The yield computation of these two methods is accomplished
in two steps. In the first step, the yield under a given defect
rate is computed without considering the clustering effect.
In the second step, the effect of clustering is introduced by
suitable procedures. The intermediate and final results of the
two methods have been compared. Results are shown to be
very close for low values of the average number of defects as
reflecting manufacturing lines of a mature process.

Fig. 3. Step 2: A yield comparison varying λ0 for a 1024 × 1024 memory
array.

TABLE X
ARRAY SIZE 1 M (1024 ROWS 1024 COLUMNS) AND λ0 = 4 FOR STEP 2

For higher defect densities, as for the initial stages of a new
manufacturing line, method A underestimates the yield even
if the results of the first steps are still close. Therefore, the
first steps of both computations are mostly equivalent, while
by introducing the clustering effect, the results differ at higher
values. Thus, to obtain more accurate results for higher values
of the average defect rate, the second step of method B should
be used.
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