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Abstract—Security of today’s networks heavily rely on Net-
work Intrusion Detection Systems (NIDSs). The ability to
promptly update the supported rule sets and detect new emerging
attacks makes Field Programmable Gate Arrays (FPGAs) a
very appealing technology. An important issue is how to scale
FPGA-based NIDS implementations to ever faster network links.
Whereas a trivial approach is to balance traffic over multiple,
but functionally equivalent, hardware blocks, each implementing
the whole rule set (several thousands rules), the obvious cons
is the linear increase in the resource occupation. In this work,
we promote a different, traffic-aware, modular approach in the
design of FPGA-based NIDS. Instead of purely splitting traffic
across equivalent modules, we classify and group homogeneous
traffic, and dispatch it to differently capable hardware blocks,
each supporting a (smaller) rule set tailored to the specific traffic
category. We implement and validate our approach using the
rule set of the well known Snort NIDS, and we experimentally
investigate the emerging trade-offs and advantages, showing
resource savings up to 80% based on real world traffic statistics
gathered from an operator’s backbone.

Index Terms—Deep Packet Inspection, FPGA, Intrusion De-
tection System, Snort, String matching, Traffic awareness

I. INTRODUCTION

The demand for network security and protection against
threats and attacks is ever increasing, due to the widespread
diffusion of network connectivity and the higher risks brought
about by a new generation of Internet threats. Network In-
trusion Detection Systems (NIDS) play a key role in such a
scenario. A NIDS is a system that analyzes the traffic crossing
the network, classifies packets according to header, content,
or pattern matching, and further inspects payload information
with respect to content/regular-expression matching rules for
detecting the occurrence of anomalies or attacks.

Software based NIDS, such as the widely employed soft-
ware implementation of the Snort NIDS [1], cannot sustain the
multi Gbits/sec traffic rates typical of network backbones, and
thus are confined to be used in relatively small scale (edge)
networks. For high speed network links, hardware-based NIDS
solutions appear to be a more realistic choice, but the hardware
implementation needs to permit the frequent update of the sup-
ported rule set, so as to cope with the continuous emergence
of new different types of network intrusion threats and attacks.

Field Programmable Gate Arrays are thus appealing can-
didates. Indeed, an FPGA-based NIDS can be easily and
dynamically reprogrammed when the content-matching rules
change. Moreover, current FPGA devices are capable to pro-
vide a very high processing capability, and support high speed

interfaces (FPGA for 100 Gbits/sec processing are available
and for 400 Gbits/sec are forthcoming [2]). However, such an
increase in the traffic collection ability is not matched with
a comparable scaling of the device frequency. Indeed, logic
resources still operate with frequencies in the order of “just”
hundreds of MHz; for instance a frequency of 500 MHz, that is
achievable only by last generation FPGA devices, can process
8-bit characters at “only” 4 Gbits/sec.

This issue is showcased by Figure 1 which reports the
historical evolution of a commercial product (Xilinx FPGAs)
from 2003 to the time of writing. The y-axis values are
normalized with respect to the corresponding parameters of
the Xilinx Virtex-II (V2) family. Whereas the number of
logic resources (# LUT) has increased 10 times, and the
I/O capabilities (bandwidth) has raised up to 400 Gbits/sec',
achievable in the Xilinx Virtex-7 by 16 transceivers working at
28 Gbits/sec each, the maximum operating frequency (speed)
has increased from 200 MHz of a Virtex-II in 2003 to slightly
over 600 MHz of the latest Virtex-7 product. In a nutshell, the
plot in Figure 1 appears to follow Gilder’s law for the evolution
of the bandwidth, whereas it appears to follow Moore’s law
for what concern logic resources.

It is thus straightforward to conclude that, similar to the
multi-core parallelization trend in microprocessors, paralleliza-
tion in FPGA-based NIDS traffic analysis appears to be a
mandatory approach to sustain the increased network through-
put.

In this work, we address the question of whether there
are better ways to parallelize a NIDS architecture, other than
the obvious approach of balancing the collected traffic across
multiple (equivalent) hardware modules devised to inspect
packets using the same set of rules. We specifically propose
a traffic-aware approach. The idea is to first process packets
via Dispatcher which i) uses elementary header information
(Protocol, port, etc) to classify traffic flows into different
categories, and ii) accordingly routes packets towards distinct
content matching engines (hereafter also referred as String
Matching Engines), namely hardware modules in charge of
supporting the subset of rules devised for the specific category
at hand.

As discussed in details later on, even if the basic idea is very
simple, turning it into practice is not nearly straightforward

Ithe plot conventionally starts from 1 Gbits/sec, as the Xilinx Virtex-II
family was not equipped with transceivers.



1000

g 100
g
e
8
€
o
b4

V2PX \'Z3 V5 V6 V7
Device Name
‘O Speed ¥ O#LUT Total Bandwidth
Fig. 1. Evolution of the main FPGA characteristics: speed, number of

resources, bandwidth

for several reasons. First, traffic classification rules used by
the dispatcher must be extremely simple, and in any case they
must be purely based on header information. This restricts
the type of classification that can be enforced. Second, such
classification approaches yield categories of uneven size in
terms of traffic volume, so that dimensioning of the content
matching modules cannot be anymore based on the nominal
link speed, but must rely on the actual per-category traffic
load. Third, and most important, the type of classification
enforced should attempt to group traffic so that the actual
NIDS rules to be enforced in the dedicated hardware modules
are as most disjoint as possible (see dedicated discussion of
the specific Snort rule set in Section IV), thus minimizing the
usage of logic resources. The application of the traffic-aware
approach to the hardware domain therefore require a detailed
analysis of aspect that are not be covered by previous works.

The specific contributions of this work can be summarized
as follows.

Snort rules analysis and relevant classification policies -
We analyze the whole rule set of Snort, in order to organize
such set into disjoint subsets, identified by suitable combi-
nations of packet header fields. For instance, the rule subset
in charge of detecting possible exploits against http servers
(protocol=TCP, destination port = 80) obviously differs from
the set of rules to be employed by another protocol such as
FTP or SMTP; but, perhaps less obviously, also differs from
the subset dedicated to analyze threats still for the http proto-
col, but against web clients (protocol=TCP, source port = 80).
Such an analysis yields the classification policies exploited
in the dispatching of traffic towards the hardware modules,
each supporting one or more subsets?. Also in the software
implementation of Snort [3] rules are grouped by port/protocol
and, for each packet, only the group of rules corresponding
to the port/protocol of the packet are checked. This rule
partitioning help to reduce memory consumption and CPU
usage of Snort. Differently from the software implementation,

2Note that traffic can be tunneled and therefore the traffic classification
based only on header information may be evaded. Although this is a serious
issue, we consider this to be out of the scope of the present work, as this issue
applies as well to any rule-based NIDS, including Snort, and it is typically
addressed via dedicated traffic classification and anti-evasion techniques.

in our case this partitioned is the first step for applying traffic-
awareness.

Real world traffic analysis for HW module sizing -
We offline analyze real world traffic, provided by an Internet
Service Provider, to quantitatively assess how traffic splits
according to the envisioned classification policies, determine
the expected worst case per-class throughput, and thus set
forth the relevant input rate requirements for dimensioning
each content matching HW module. In essence, we apply,
for an HW-based development, a methodology similar to the
one proposed in [3], where an adaptive algorithm depending
on the traffic mix is used to optimize a software-based IDS.
We stress that the goal of such an analysis is not to provide
an once-for-all system dimensioning, but, rather, to suggest
a methodological approach. Indeed, variations in the traffic
mix do occur during the operating lifetime of the NIDS, and
may also depend on the specific operator’s deployment. This
does not appear to be a practical concern, as in any case
the synthesis of the content matching engine must be rerun
at every rule set update (order of once per week) whereas
variations in the traffic mix are shown to be much slower,
in the order of several weeks [4], [5]. And when significant
variations in the traffic mix are detected, the resulting system
re-design can be conveniently accounted for, while performing
the synthesis associated to the periodic rule update.

HW module implementation and relevant trade-offs -
We perform several constrained syntheses (with respect to
speed and area) of the different string matching engines, to
gather insights in the emerging area/speed trade-offs for the
specific NIDS rule set synthesis scenario. We show that if
multiple copies of the same string matching engine are used
to achieve a higher throughput, the choice between area or
speed optimization of the engine is not unique, but strictly
depends on the circuits to be implemented and, in some cases,
the emerging area-delay trade-offs are quite unexpected (see
details in Section V). The use of multiple copies of low-
speed string matching engines allows to make an optimization
between the area of the single engine, its maximum operating
frequency and the overall throughput.

The rest of the paper is organized as follows: Section II
presents the architecture of the basic string matching module
and discusses the problems related to the implementation
of string matching systems. Section III presents the overall
system architecture. Dispatching policies and repartition of
NIDS rule subsets across the deployed string matching engines
is discussed in Section IV, whereas their optimized synthesis
is addressed in Section V. Section VI presents the analysis of
the traffic taken into account, derives the requested throughput
of each subsystem and presents the performance and charac-
teristics of the overall system. Finally, conclusions are drawn
in section VIIL.

II. IMPLEMENTATION OF STRING MATCHING CIRCUITS

In this section, we first introduce the reference HW string
matching circuit design architecture considered throughout
this paper, meanwhile addressing related work and extensions.
Then, we discuss basic scalability issues which appear to affect



most design alternatives, and which motivate our proposed
packet multiplexing approach.

A. Basic architecture and related extensions

String matching algorithms have been widely studied, for
both Software [6] and FPGA Hardware implementation, and
software tools for automatic translation from the NIDS rules
to the corresponding hardware circuits have been proposed
[7], [8]. Moscola [9] proposed a Deterministic Finite Au-
tomata (DFA), supporting multi bytes comparisons and partial
matches. Sidhu and Prasanna [10], [11] mapped a Non-
deterministic Finite Automata (NFA) on an FPGA. These
solutions can be applied to pattern matching and extended to
matching regular expression such as PCRE (Perl Compatible
Regular Expression). Extension to regular expression has been
proposed in [8], [11], [12], [13]. These extensions can be
based on the use of DFA or NFA, as described in [8],
[12], [13], or on the shift-and-compare architecture presented
in [14]. Prefix sharing rule saving FPGA’s area [14], [18]
have been proposed too. Moreover, [19] proposes the use of
decoded CAM of hashing functions to achieve data rate up
to 8 Gibs/sec on a Virtex-II FPGA, while in [10], [13] a
multi character NFA, achieving 8 Gbits/sec is presented. [20]
proposes an implementation based on a scalable, highly fine-
grain pipelined architecture, able to process up to 11 Gbits/sec.
Finally, approaches based on hashing [21], [22] or Bloom
filters [23] have been also considered in literature. Even if
approaches based on hash can be appealing, they suffer of
different drawbacks, related to the number of hash to perform
and to the memory requirements. But the main limitation of
an hash-based approach is that it hardly complies with the
implementation of SNORT modifiers (which other approaches
instead easily support).

The basic architecture considered in this paper follows the
shift-and-compare architecture presented in [14]. The relevant
design is reported in Fig. 2. The main input of the circuit is an
8 bit signal, that transports the payload under inspection one
character each clock cycle. The only output of the circuit is
the “Match” signal, set to high only if a string is matched.
The input is fed into an 8 bits register chain storing the
last M packet’s characters. The outputs of the register chain
are provided as input to a combinatorial network. This latter
detects which characters are stored, and performs the AND
operation of the detected characters. This signal indicates that
a rule has been matched without specifying which rule. If,
as suggested in [15], [16], [17], our system is deployed as
a snort offloader, devised to forward the malicious packets
to a software IDS implementation, a matching signal is all
needed to drive a simple pass/drop packet logic. Indeed, note
that the deployment of a full-fledged hardware IDS requires
supplementary features (e.g. alert generation, packet logging
and so on), that can be better performed in software. Besides,
we remark that if the goal is to further detect which rule has
been matched, a quite straightforward implementation consists
in substituting the OR gate with a priority encoding circuit that
takes as input the output of each AND gate and provides as
output the binary representation of the highest input with high

[ Modifier ]| Description i
offset: N the search for the content begin after N characters
depth: N the search for the content ends after /N characters

distance: N the distance between to contents is at least /N characters
within: N the distance between to contents is less than N characters

TABLE 1
DESCRIPTION OF KEYWORDS MODIFIERS

value. A rough estimation of the resource occupation of the
encoder is around 15K LUTS?, that is similar to the value
reported in [28]. Fig. 2 further illustrates a toy example which
consists in the search for two strings: “abe” or “def”. If the
character d is stored in the register labeled 2(n—3), e is stored
in z(n — 2) and f is stored in x(n — 1), all the inputs of the
uppermost AND gate are equal to 1 and the circuits signal the
matching by the “Match” output.

A string matching circuit can be implemented using char-
acter comparators (realized with a combinatorial network) and
shift registers storing the most recent characters.

For example, in [20], [30] a decoded structure is proposed,
which allows sharing of the comparators in the combinato-
rial network. While increasing the number of registers, this
structure permits to minimize the combinatorial network, if
the number of string to be search is large enough.

Starting from the basic string matching circuit (Fig. 2), we
extended it with counters and comparators (following [8]) to
support the more specific and complex rules specified by Snort.
Specifically, we deployed a global counter and a number of
dedicated registers tracking partial matches. This extension
allows an easy hardware implementation of the typical Snort
rules [1], which usually are expressed in the form of content
+ modifiers, where

o Content: fixed pattern to be searched in the packets
payload of a flow. If the pattern is contained anywhere
within the packets payload, the test is successful and the
other rule options tests are performed. A content keyword
pattern may be composed of a mix of text and binary data.
Most of the rules have multiple contents.

o Modifiers: they identify a location in which a content
is searched inside the payload. This location can be
absolute (defined with respect to the start of the flow)
or relative to the matching of a previous content. Table
II-A summarizes the most used modifiers.

Fig. 3 shows an example of a rule matched exploiting the
extended content matching approach. The rule to be matched
is composed of two contents “ab” and “cde” that must be at a
distance less than 10 bytes. The first part of this rule, i.e. the
match of the content “ab” is performed by the two inputs AND
gate. When the content is matched, the value of the global
counter is stored in a register. Now, when the second content
is matched, the system also checks if the difference between
the global counter and the value stored in the register is less

3The encoder output requires loga(n), where n is the number of rules. In
our cases of 5700 rules, 13 bits are sufficient. For each output a logarithmic
tree of 6-input LUTSs can be used. The number of LUTs in the logarithmic
tree is n - (1/6 + 1/36 + 1/126 4+ ...) ~ 0,2 - n. The total number of
estimated LUT is therefore 13 - 0,2 - n =~ 14820.
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than ten bytes. This extension is resource consuming because
a register and a comparator must be instantiated for each part
in which the rule is decomposed. The resource occupation of
this block depends on the number of rules implemented.

An alternative implementation of a string matching engine
is to rely on a DFA based structure, like the one presented in
Fig. 4. This structure shares, with the previous one, the use
of a character comparator, followed by some AND gates. The
difference is that here, registers (and therefore the state) do not
store the last transmitted characters (like in Fig. 2), or the result

of their decoding (like in [20], [30]), but an intermediate result
that tracks the partial matching of the transmitted characters.
In particular, in the example in Fig. 4 the flip-flop labeled
F1 stores the matching of a, while F2 stores the matching of
“ab”. Note that the number of register elements grows with
the number of strings to be searched for, and with the number
of characters of each string.

In the rest of the paper we focus our attention on the basic
shift-and-compare architecture. We remark that our results
can be (at least qualitatively) extended to other alternative
constructions, including the DFA architecture above described.
Indeed, these architectures ultimately are composed of the
same basic blocks, differ only on how and where the matching
state is stored, and may be transformed one into the other
(or obtain intermediate hybrid architectures depending on the
area/speed trade-off) by using suitable retiming algorithms
[31], [32].

B. Scalability issues

Realistic applications employ several thousand content
matching rules (e.g. the Snort basic ruleset includes more than
5700 rules), and strings to be matched can be as long as one
hundred characters. In such practical deployment conditions,
the combinatorial network can become huge, and the number
of registers grows linearly with the number of character of
the longest string. The parallel search for different strings
corresponds to an increase in the fan-out of the registers and of
the character comparators. Also, the fan-in of the AND gates
increases with the strings size.

Moreover, the area of the resulting circuit is not only directly
affected by the dimension of the combinatorial network, but it
is also compromised by the limitations of the logic optimiza-
tion algorithms, especially when long strings are required by
the application. In our synthesis experiments, performed on a
last generation workstation equipped with 4 GBytes memory,
the logic optimization of a circuit searching for one thousand
strings has required 20 hours to be carried out by using the
Xilinx XST synthesis software [33]. The results obtained when
the number of overall character grows are worse that expected
also in the amount of logic reduction.

The other implementation issue that must be faced when
the number of overall character grows, is the timing closure
problem. This problem is amplified by the high fan-out and



fan-in nodes in the circuit. These fan-out nodes are related both
to the architecture of the circuit and to the logic optimization
performed to increase the resource sharing in the combinatorial
network.

As expected, timing closure and area occupation are con-
flicting issues which require a huge design effort to be solved.
The techniques to face these problems are widely known,
and span from limiting the fan-out and replicate the logic,
to increasing the pipeline and performing speed retiming. In
all these cases, when the requested throughput increases to the
Gbits/sec rate, these approaches become unfeasible.

Therefore scalability issues becomes very important for
multi-Gbps networks and this concern has been already men-
tioned in some previous works [19], [20].

A solution proposed at architectural level consists in using
a wide data bus that operates on multiple characters each
clock cycle [19], [13]. With this approach, the data processing
rate can be improved without increasing the operating fre-
quency. For example, an 1-character string matching circuit
operating at 125 MHz provides a throughput of 1Gbit/sec,
while a 4-character based circuit is able to sustain a rate
of 4 Gbits/sec. The area required for implementing a multi
character circuit increases at least linearly with the number of
characters. This approach has several drawbacks that limits
the usability of such method. First of all it is not easily
scalable since the modification of the number of characters
that a content matching engine checks in a clock cycle requires
the complete redesign of the content matching engine itself.
Moreover, the extension of this method to regular expression
can be difficult. Basically the problems related to a multi-
character approach derive from the nature of the NIDS rules
(and from the nature of the data that are inspected) that are
strongly character dependent. Since the rules often are based
on matching strings, counting the number of characters and so
on, it is not trivial to extend these analyses to a multi-character
implementation. Finally, the effort of the logic optimization
algorithms for these architectures is greater than one of a
single character architecture and also the quality of results
is a such case is in doubt. Similar considerations about the
limitation of the multi-character approach have been presented
in [8]. Moreover, [13] shows that, when number of characters
becomes greater than 4, the performances of this approach,
computed as throughput/area (Gbps/#LUTs), decreases.

The approach proposed in what follows alleviate these is-
sues, since the area/speed optimization constraints are applied
to smaller hardware blocks running at lower frequency.

III. OVERALL SYSTEM ARCHITECTURE

As anticipated in the introduction, our proposed system
comprises multiple string matching modules. These are further
organized into clusters, suitably sized so as to sustain the
expected per-cluster traffic load. Packets are balanced across
clusters on the basis of policies implemented in a block called
dispatcher. The overall system architecture is shown in Fig.
5. The main blocks of the system are:

o network interface - it collects packets from the network
link under monitoring;

Cluster

QUEUE
MANAGER

SME-1

—

Incoming
packets
Network aln:
Interface »| Dispatcher
Fig. 5. Implementation of the overall string matching system

e dispatcher - it provides a header-based packet classifica-
tion, whose result is used to determine to which specific
string matching cluster the packet is transmitted,;

e string matching engines - blocks performing string
matching; their design is identical (as described in the
previous section), but the content searching rules synthe-
sized in string matching engines belonging to different
clusters differ and specifically depend on the type of
traffic routed to the considered cluster (see Section IV); A
generic string matching system is composed of n cluster,
each one clocked at a specific frequency f; and composed
of K; identical SMEs.

e queue manager - this block provides a queue for each
SME cluster. The queue provides the buffering of packets
to cope with packet bursts. The queues can be realized by
using external memories to provide enough space. The
memory can be partitioned as a set of circular buffers,
each one controlled by two pointers. A control FSM,
realizing a round-robin policy allows using the memory
as a set of independent queues. Since the SME cluster
may be clocked with a different frequency, with respect
to each other and to the queue manager, asynchronous
FIFOs for clock decoupling are deployed between the
queue and the SMEs.

Since, as discussed in the previous sections, multi-byte
string matching engines do complicate the internal design, the
queue output uses 8 bits. Conversely, the interfaces between
the remaining modules can be implemented using multiple
characters at a time. For example, if the network interface is
the 10 Gigabit ethernet core of Xilinx [34], that provides a
64 bits interface working at fy=156.25 MHz, the data width
will be 64 (N=64 bits), and the operating frequency of the



dispatcher will be fj.

The architecture shown in Fig. 5 is very flexible and general.
The resulting operation in fact depends on a configuration
setting which includes the following decisions and parameters:

o Dispatcher classification policy;

o string matching rules loaded over each cluster of engines;

o operating frequency of each cluster;

o number of string matching engines deployed in every

cluster.

For instance, a basic configuration which we call agnostic
(indeed used as benchmark in Section VI) consists in not using
any packet classification policy (or, in other words, deploy
a single cluster handling all the offered traffic), but route
each received packet to the queue with most available space.
Consistently, all the string matching engines are identical in
the fact that they must support the whole ruleset. Furthermore,
their operational frequency f; is the same, and it is designed
to satisfy the obvious inequality N - fo < 8K f; where K is
the number of deployed engines. The dispatching of packets
to different subsequent blocks implementing only a subset
of Snort rules has been already proposed in literature (e.g.
in [28], [35]). In particular, [28] uses a two-stage approach
in which a first pre-filtering stage selects which rules of
the Snort rule-set must be further analyzed by the second
stage engine. The first stage inspect the incoming packet
with respect to the first part of each rule. This first stage
is more complex with respect to our approach, that only
requires to inspect the header to detect ports and protocol.
The dispatching policy of [35] is similar to the one we
proposed, since it is based on port/protocol classification.
This allows optimizing the memory requirements of the FSMs
implementing the Aho-Corasik [6] algorithm. The overall
Snort rule-set is split in different FSMs , saving memory with
respect to an unique FSM containing all the rules. The work
in [35] try to optimize memory occupation, while our work
focuses on logic optimization, since we implemented the string
matching engines by means of comparators and shift-registers.
However, the main difference of these paper from our approach
is that both the works [28], [35] do not take into account any
information about the traffic rates for dimensioning the second
stage engines. As will be shown in Section VI, this difference
allows an impressive resource saving with respect to the above
mentioned approaches.

Conversely, we are interested in exploring the performance
gains that may be achieved by dispatching different traffic
types to different clusters, consistently distributing different
content matching rules over different engines, independently
optimize the area-frequency tradeoff for each deployed engine,
and dimensioning each engine depending on the traffic-load
conditions. For simplicity, we take a practical three-steps
design, organized as follows.

Step 1: ruleset distribution and relevant packet dispatch-
ing policy. The first, necessarily heuristic, step, is to distribute
different content matching rules across multiple engines. Such
distribution is driven by two practical requirements: i) permit
an elementary dispatching policy, based on simple protocol
header information, meanwhile ii) attempt to obtain (as much
as possible disjoint) subsets of size smaller than the whole rule

set. Our proposed classification, described in the next section
IV, indeed relies on trivial protocol/port information, thus
permitting a straightforward implementation of the dispatcher.
It is worth noting that per-protocol grouping of string matching
rules is the most natural direction, as in practical NIDS
such as Snort, rules defined for a same protocol not rarely
share common sub-strings (for instance, the string “HTTP”
requires to be matched by most rules applied to protocol: TCP
and destination port:80), and hence may yield savings in the
subsequent HW circuit design.

Step 2: per-engine optimized HW design. For each spe-
cific engine (and its subset of different rules) we performed in
Section V a large amount of syntheses in order to identify the
best tradeoffs in terms of throughput/area. Quite surprisingly,
such trade-off significantly depends on the specific ruleset
considered. The output of this second stage design is the
frequency at which each engine is implemented.

Step 3: Traffic-load-based system dimensioning. Finally,
in Section VI we perform an experimental analysis of real-
world traffic devised to provide information about the per-
cluster load, and consequently determine how many copies of
each synthesized engine are needed to sustain the resulting
load.

Obviously, the outlined approach is open to improvements,
by using information here exploited for individual steps in a
more holistic design procedure (e.g. use traffic information for
determining how to distribute rules across engines), although
it does not appear simple to move from heuristics to a more
formal design methodology. Finally, even if here we refer
always to the string matching engines described in the previous
section, we outline that this method can be generically applied
to many of the string matching systems proposed in literature.
For example, also [21] could benefit of a partitioned traffic-
aware implementation, since the implementation techniques
used to improve performances (i.e. pipelining, parallelism,
and memory replication) suffer of the same scalability issues
already mentioned in previous section for other techniques
([13] [19]). Instead, packet level parallelization should be
able to better exploit area/delay trade-off than the classical
parallel/pipelined implementation, and the traffic-awareness
could be easily reduce the memory replication.

IV. SNORT RULESET SUBDIVISION

We started from the analysis of the Snort [1] ruleset. The
basic ruleset for Internet Traffic analysis comprises 5567 rules.
These are already pre-classified on a per-protocol basis (TCP,
UDP, IP including ICMP etc). Note that a non overlapping
(disjoint) partitioning of the Snort rules is not feasible, as some
rules, for instance those related to the IP protocol, must be
obviously applied to all the incoming network traffic.

The quantitative results of our analysis are summarized in
Table II. This table splits the Snort rules on the basis of
the type of considered traffic, specified in terms of protocol
(IP, TCP, UDP) and port (HTTP, IANA assigned non HTTP,
i.e., smaller than 1024, and ephemeral i.e., greater or equal
than 1024). The direction of the traffic (i.e. source versus
destination port numbers) is further accounted in our proposed



TABLE II
SNORT RULES BREAKDOWN

Type of traffic Number of rules Set

IP rules 34 A

TCP rules without port specification 491 B

UDP rules 384 C

TCP rules with DST port 80 (uplink: HTTP towards servers) 1869 D

TCP rules with SRC port 80 (downlink: HTTP towards clients) 812 E
TCP rules with DST port not 80 1977 F+G

TCP rules with DST port < 1024 and not 80 1157 F

TCP rules with DST port > 1024 820 G

total number of rules 5567 -

TABLE III
MAPPING OF RULE SUBSETS OVER STRING MATCHING ENGINES

String Match Engine (SME) Name Sets Number of rules
SME-UDP A+C 418
SME-WEB_UPLINK A+B+D 2394
SME-WEB_DOWNLINK A+B+E 1337
SME-NONWEB_PORTLOW A+B+F 1682
SME-NONWEB_PORTHIGH A+B+G 1345

classification. Such split has the advantage that a classification
policy is trivially supported over the dispatcher.

Table II's rule breakdown is based on the following consid-
erations:

o Set A (IP rules): used for the IP protocol, and hence
applied to all TCP and UDP packets and to be supported
on all the string matching engines; note that the number
of rules in this set is very small (only 34).

e Set B (generic TCP rules): applied to all TCP traffic,
irrespective of the specific application supported (i.e.
port number), and hence to be supported on all the
TCP-related string matching engines; although greater
than the previous IP case, the size of such set is still
relatively small (491 rules) especially if compared with
the following sets.

e Set C (UDP rules): dedicated to UDP traffic; this set is
fully disjoint from the previous set B (TCP traffic) and
hence can be supported over a different string matching
cluster dedicated to UDP traffic analysis.

e Set D (HTTP server rules) and set E (HTTP client rules):
these two set of rules are dedicated to the analysis of Web
(HTTP) traffic. The rules devised to inspect the traffic
addressed towards web servers (namely, set D) is fully
disjoint from the rules devised to inspect traffic in the
opposite direction (set E); this suggesting the deployment
of two independent string matching clusters for the two
cases.

e Set F and G (non web TCP traffic): these rules, in total
1977, are devised to analyze non web traffic. They can
be conveniently partitioned into two disjoint subsets: set
F comprising 1157 rules, dedicated to inspect non web
traffic generated by TANA-registered applications (port
number lower than 1024), and set G comprising the 8§20
rules devised to analyze the remaining traffic.

These considerations suggest to deploy 5 different string
matching engine designs, summarized in Table III, along with

the relevant number of supported rules. Note that, in the worst
case of the engine to be included in the cluster dedicated to the
analysis of traffic addressed to a web server, only 2394 rules
out of the initial set of 5567 shall be implemented, i.e. about
43%. Finally, we stress that the number of rules supported
by each engine is just a very rough indicator of the expected
circuital complexity, as this latter depends on the specific rules
to be deployed, indeed largely differing in terms of size of
strings to be matched, rule modifiers to be accounted, and
so on. As a matter of fact, Table IV presented in the next
section highlight that despite the large amount of rules, SME-
WEB_UPLINK is very conveniently implemented (thanks to
the recurrent sub-string patterns to be matched and the limited
usage of Snort modifiers), especially when compared with
SME-NONWEB_PORTLOW, despite this latter contains a
significantly lower number of rules (“only” 1682 versus the
2394 of SME-WEB_UPLINK).

V. STRING MATCHING ENGINES SYNTHESIS

The five String Matching Engines (SMEs) identified in the
previous section are implemented as independent modules;
hence their synthesis can be independently optimized. We
carried out, per each SME, a number (between 5 and 10 each)
of syntheses with different speed constrains, so as to identify
the one(s) which achieve the best area/speed trade-off.

Specifically, in order to maximize the throughput by us-
ing the fewer number of logic resources, we evaluated the
area-delay product of each implementation, computed as the
ratio between number of LUTs and the maximum operating
frequency, and selected the one with the lowest area-delay
product.

Interestingly, depending on the complexity of the circuit
to be synthesized, qualitatively different results have been
obtained. For large circuits, such as the case of SME-
NONWEB_PORTLOW, optimization criteria are not straight-
forward as, the best implementation is at an intermediate,
hardly predictable, operating frequency. Indeed, the plot in
Fig. 6 a) shows the number of used FPGA logic elements (y-
axis) versus the maximum achievable frequency, for different
implementations of SME-NONWEB_PORTLOW.

The two most resource consuming implementations require
almost 48000 LUTs and run at 275 and 295 MHz, while
the least consuming one requires 32408 LUT and runs at
221 MHz. The solution that maximizes the throughput can
be easily identified as the one with the lowest Area-Delay



Product. To this purpose, Figure 6.b) plots the ratio between
number of LUTs and Maximum Frequency. It can be seen that
the best choice is the circuit running at 221 MHz, whereas
circuits with less area or higher frequency achieve lower
performance.

Conversely, for small circuits the implementation with the
lowest area-delay product is typically the fastest one. As an
example, Fig. 7 documents results obtained for the SME-
WEB_UPLINK case; the remaining SMEs are qualitatively
similar to this and not reported to save space.

Overall, our experiments appear to further confirm, for the
specific scenario of string matching here tackled, the fact that
when circuit complexity increases, limitations in the synthesis
process largely impact results. Indeed, with small SMEs, speed
optimization is carried out at cost of a limited increase in
logic resource consumptions (the number of LUTs for the
various implementations differs of just about 5%), thus making
the implementation with the highest speed also the one that
provides the best throughput/area trade-off. Instead, when the
circuit size grows, not only the best implementation in terms
of throughput/area trade-off is for an intermediate speed, but
the variability in terms of number of LUTS is up to as much as
50%, being 32408 the smallest one and 47516 the fastest one.
We believe that this is caused by limitations in the heuristics
exploited by the synthesis algorithms. All data presented in
this section are referred to result obtained without enabling
the retiming available by the Xilinx synthesis tools. Enabling
retiming we achieve results that are quantitatively different,
but very similar to those presented here.

Table IV summarizes the best throughput/area results
achieved for all the 5 SMEs synthesized. For sake of compar-
ison, the table further reports results obtained by the synthesis
of a single SME supporting all the rules. Note that such a
single synthesis uses more than 8% extra LUTs with respect
to the multiple SME case*, and that in all cases but one
the resulting single SME implementation has a lower speed.
This is quite remarkable, since, as discussed in section IV, a
disjoint partition of rules was not technically achievable (rules
belonging to sets A and B had to be reimplemented in most
of the SMEs - see table III and the total number of rules
implemented is thus 7176).

TABLE IV
SYNTHESIS RESULTS FOR THE BEST IMPLEMENTATIONS OF THE FIVE SME

SME Name Frequency (MHz) # LUT
SME-UDP 337 5220
SME-WEB_UPLINK 303 6055
SME-WEB_DOWNLINK 288 8273
SME-NONWEB_PORTLOW 221 32408
SME-NONWEB_PORTHIGH 340 7810
Unified set 241 64701

VI. TRAFFIC-AWARE SYSTEM DIMENSIONING

Up to now, the discussion has been limited to the design of
single modules. We now address our initial goal, i.e., how to
dimension the entire NIDS, and which savings our approach
may accomplish. We recall that our approach promotes a
traffic-aware dimensioning. Our dispatcher routes different
traffic types to different string matching clusters on the basis of
the enforced classification policy. As a result, a string matching
cluster is not required to support the entire traffic, but shall
sustain only the amount of traffic belonging to the considered
type. It follows that the number K; of SME replicas to be
deployed within each cluster ¢ (refer back to Fig. 5) can be
adapted to the actual per-cluster traffic load, in turns lower
than the network link throughput.

First, let’s compute, as benchmark, the system sizing in
the assumption of a traffic agnostic system where a single
string matching engine is designed including all rules, and it
is replicated to sustain a total peak load of 10 gbps. From table
IV, we see that the best throughput/area implementation for
the case of single SME supporting all the IDS ruleset operates
at 241 MHz, i.e. it can support up to about 1.9 gbps. Therefore
a cluster of 6 replicated engines is needed to sustain a 10 gbps
peak load, which in turns implies that a total number of 388206
LUTs are required.

In order to dimension a traffic-aware system, information
about the actual traffic composition is needed. Of course,
the overall sizing depends on such a traffic mix, and hence
on the specific deployment case, so that no universally valid
dimensioning rules are possible. Nevertheless, some insights
on the extent of such a resource saving may be gathered by
analyzing specific (and realistic) use case deployments. In
details, in what follows we base our quantitative considerations
on the analysis of 68GB of traffic made available by a regional
ISP during the experimental demonstration of the european
research program FP7-PRISM [36]. Unfortunately, we have
no access to a tier one network operator running 10 gbps
links, hence we need to rely on the assumption that the traffic
hereafter analyzed is representative also for a core network
backbone (assumption which appears reasonable as such traffic
is the result of the multiplexing of several traffic aggregates
collected by smaller ISPs).

traffic dataset analysis: average values

Our first step consisted in the analysis of the traffic dataset,
and the extraction of statistics which can be directly related
to the classification promoted in section IV. Table V reports
statistics based on number of packets and amount of delivered
bytes. The table further reports the SME cluster in charge of
handling the relevant traffic.

In terms of dimensioning, our main concern relates to the
traffic rate measured in each category. The table shows that
three traffic classes, namely IP/UDP, web downloads, and non

“Note that these considerations are purely based on synthesis results; when
we move to the entire system dimensioning and include traffic awareness
in the system sizing, the overall resource saving is much greater - see next
section VL.
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TABLE V

TRAFFIC STATISTICS BREAKDOWN

Type of traffic % of packets % of bytes Handling SME cluster
IP+UDP 31.1% 14.3% SME-UDP
TCP, DST port 80 9.0% 1.7% SME-WEB_UPLINK
TCP, SRC port 80 14.2% 33.8% SME-WEB_DOWNLINK
TCP, non HTTP, port < 1024 0.2% 0.1% SME-NONWEB_PORTLOW
TCP, non HTTP, port > 1024 45.5% 50.1% SME-NONWEB_PORTHIGH

web traffic using high ports (hence including several peer-
to-peer applications) largely dominate. The average rate for
the two remaining traffic classes is very low, to the extent
that, in the assumption of an overall load of 10 Gbits/sec, the
traffic belonging to the SME-NONWEB_PORTLOW accounts
for as little as 10 Mbits/sec’, and the traffic addressed to web
servers (i.e. HTTP requests or POSTs) remains well below
200 Mbit/sec.

SWe remark that such a very small traffic load may be trivially handled
via a software implementation of the relevant string matching engine. In
what follows, for consistency of presentation, we assume that all SMEs are
implemented in hardware, but this finding suggests that a further significant
saving may occur if hybrid HW/SW implementations are considered.

traffic dataset analysis: fluctuations

Clearly, the IDS system dimensioning should not be per-
formed on just average traffic loads, but must be robust to
traffic fluctuations. Indeed, figure 8 graphically plots the per-
traffic-type fluctuations experimented versus time. The plot in
the figure focuses on a 4 GB trace collecting 8 million packets:
results obtained for other traces available do not significantly
differ. The result presented in table VI shows the average and
plot the peak rate for the different types of traffic.

Queue dimensioning

Note that the choice of the throughput at which each SME
shall be operate must be strictly greater than the average
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TABLE VI
PEAK RATE OF THE DIFFERENT TYPES OF TRAFFIC

SME Cluster Average values  Peak Rate
(Gbits/sec) (Gbits/sec)
SME-UDP 1.43 22
SME-WEB_UPLINK 0.17 0.2
SME-WEB_DOWNLINK 3.38 4.1
SME-NONWEB_PORTLOW 0.01 0.2
SME-NONWEB_PORTHIGH 5.01 6.5

throughput, otherwise loss at the queues would be unavoidable.
Moreover, the larger the SME throughput, the lower the re-
quirements on the queue buffer sizing. A thorough dimension-
ing of the queue buffer requires an in depth queueing analysis
of the traffic variations (long term behavior, correlation, etc).
Such level of analysis is out of the scopes of the present
paper for at least two reasons: first, it would require a much
larger dataset captured at different day/week times; second and
most significant, such an analysis is worth only when tailoring
the design to an actual real world deployment. And, even
in in this case, measurement-based approaches consisting in
appropriately resizing the system at every periodic IDS ruleset
update (and related HW module re-synthesis) on the basis
of historical measurements appear more practical. However,
to provide some quantitative insights in the behavior of the
system with respect to this issue, we have performed a set
of simulations devised to quantify the queues occupancy at
different service rates (the SME throughput). The simulations
have been fed with the real traffic traces. From the data
of table VI we can see that the SME-WEB UPLINK and
SME-NONWEB PORTLOW have extremely low throughput
requirements with respect to the one achievable with an SME
(a SME clocked at 100 MHz provides 0.8 Gbits/sec). Using the
service rate of 0.8 Gbits/sec for this traffic type the maximum
queue occupancy remains always lower than 25 KB for all
the analyzed traces in the case of SME-WEB UPLINK (see
Fig. 9.a) and 20KB (see Fig. 9.b) for the SME-NONWEB
PORTLOW traffic.

Instead, for the other three clusters which exhibit a more sig-
nificative amount of traffic, we analyze the queue occupancy

Mpkts

Time dependency of traffic rate of the analyzed trace - x-axis unit = 1 Million of packets

when the service rate is set to the average rate incremented
by 5 %, 10% or 20%. The data has been reported in Fig.
9.c 9.d and 9.e for SME-UDP, SME-WEB DOWNLINK and
SME-NONWEB PORTHIGH respectively.

By using as service rate the average rate incremented by
5%, the maximum occupancy of the queues was 150KB for
the UDP traffic and 1.8 MB for SME-DOWNLINK and 1
MB for SME-PORTHIGH traffic. Instead, by oversizing the
service rate up to 20%, the queue occupancy decreases to
100KB for UDP traffic, 600 KB for SME-DOWNLINK and
250 KB for SME-PORTHIGH traffic. These results provide
some suggestion on the practical sizing of the queues used
in our system. Worth to mention is the fact that even a
limited oversizing of the SME throughput allows to achieve a
relatively small queue size.

A. Implementation details

The target board for our implementation is the INVEA
COMBO-LXT [37], an express PCI x8 mother card equipped
with the XILINX Virtex5 XC5VLX155T [38], two QDR
RAM memories and up to 4 GB of DDR2 memory. The
2 QDR II SRAM chips provides high bandwidth dual port
memory for routing tables, flow memory, low latency data
buffers. The total capacity is of the QDR is 9 MB with
a throughput of 17166 Mbps for read operation and 17166
Mbps for write operation. The amount of memory provided
by the QDR memory fully satisfies the memory requirements
for the queues, as estimated in the previous subsection. An
alternative solution is the use of the DRAM that is extremely
abundant with respect to the queues size requirements. This
memory can be used when the problem of out of order times,
due to FPGA reconfiguration must be taken into account.
FPGA reconfiguration occurs when a new ruleset is loaded
into the system, or as a consequence of the detection of a
sudden change in the traffic-mix rates due to a malicious event
(e.g. a Denial of Service attack). As discussed in [39] long
queues can be used to face the out of order time needed for
FPGA reconfiguration. The reconfiguration time of the entire
XC5VLXI155T FPGA is around 300 ms [40], corresponding
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to 3 Gb (less than 512 MB) for a 10 Gbits/sec peak rate. This
queue cannot be implemented in the QDR memory, but can
be easily implemented in the DRAM. The board is equipped
with a daughter board providing two 10 GbE interfaces, and
is hosted in a PC workstation. The operating system sees the
board as a traditional network card, and therefore the filtered
packets coming from the FPGA can be directly provided to a
software IDS. In order to simplify the design we restrict the
system to work on four clock frequencies: 156.25 MHz for
the dispatcher and network interface, and 100, 280 and 300
MHz for the SME clusters®. The Xilinx Digital Clock Manager
Modules (DCM) [38] have been used to provide the different
clock source to the different SME clusters implemented on the
COMBO-LXT card.

Table VII shows that three clusters, namely SME-UDP,
SME-WEB_UPLINK and SME-NONWEB_PORTLOW, can
be implemented with just a single SME, thanks to the low rel-
evant traffic load. SME replication is needed only in the case of
SME-WEB_DOWNLINK, where two SMEs permit to achieve
a throughput of 4.48 Gbps, sufficient to sustain the expected
load, and in the case of SME-NONWEB_PORTHIGH, where
three SME replicas are needed. The total number of SME is
8. In order to exploit the QDR available in the target board
to realize the queues for packet buffering, we allocated for 2
MB for the queues corresponding to the SME clusters with
high traffic (SME-UDP, SME-WEB DOWNLINK and SME-
NONWEB PORTHIGH) and a generous 1MB for the other
queues. Following the discussion presented in the previous
sub-section, this amount of memory is sufficient to avoid that
the queue is going full when burst of packet of the same types
arrives. The most remarkable result shown in Table VII is the

6actually the COMBO-LXT also another clock source for the PCI interface,
that we do no take into account

total amount of LUTs needed to implement the system, only
77664. When compared with the size of a traffic agnostic
system implementation (388206 LUTS), the resource saving
is as much as 80%. Besides, note that almost half of them
are required to implement the SME-NONWEB_PORTLOW
SME which could alternatively implemented via SW given
the marginal rate requirements (see discussion in footnote 5).
The last row of the table reports also the area and throughput
of an agnostic system with only one instance of each SME.
This system has an area occupation similar to the traffic-aware
system but provides a throughput that is less than 2 Gbps.
Even if it is really difficult to carry-out a fair comparison
between our proposed system and other ones proposed in
literature, (different FPGA technologies, different versions of
the ruleset ecc.) we outline that our agnostic system has
comparable performance and resource occupation with other
system proposed in literature (e.g. [28] reports 180K LUTs and
14 Gbps for a Virtex4 implementation). Instead, the traffic-
aware implementation allows a significant savings in terms of
area with respect to the approaches previously presented in
literature.

VII. CONCLUSIONS

This paper shows that the exploitation of traffic clas-
sification and load statistics may bring significant savings
in the design of HW Network Intrusion Detection Systems
(NIDS). Specifically, we have presented a traffic-aware NIDS
architecture, where a dispatcher forward different traffic types
to string matching engines supporting different IDS rulesets.
This basic idea has been developed in three steps. First,
considering the well known Snort NIDS as reference use-
case, we have analyzed the relevant ruleset and subdivided
rules into subsets handling different traffic types. Second,



TABLE VII
OPTIMIZATION RESULTS FOR THE IMPLEMENTATIONS OF THE FIVE SME. 100%

SME name Number of  Frequency  120% of average  Achieved throughput  Total number

copies (MHz) rate (Gbits/sec) (Gbits/sec) of LUTs
SME-UDP 1 300 1.71 2.4 5220
SME-WEB_UPLINK 1 100 0.012 0.8 6055
SME-WEB_DOWNLINK 2 280 4.05 4.48 16546
SME-NONWEB_PORTLOW 1 100 0.2 0.8 32408
SME-NONWEB_PORTHIGH 3 300 6 7.2 23430
Total N/A N/A N/A 10(*) 77664

Agnostic system 6 241 N/A 11.5 388206
Single instance of the agnostic system 1 241 - 1.91 64701

(*) 10 Gbits/sec under the traffic conditions of Table VI

we have optimized the HW implementation of each specific
String Matching Engine supporting such derived rule subsets.
Finally, we have dimensioned the system based on traffic
statistics experimentally gathered from a real world operator’s
deployment.

Numerical results show that our proposed design methodol-
ogy yields significant advantages in terms of resource savings.
In the specific experimental scenario considered in this paper,
an 80% reduction in the number of LUTs was accomplished.
Such resource savings stem from the following main reasons.
First, in most generality, traffic awareness permits to fine tune
the amount of HW resources dedicated to each traffic category.
More specifically, replication of string matching engines is
restricted to the case of highly loaded traffic categories.
Second, each string matching engine supports only a subset
of IDS rules, and thus optimization of its HW implementation
appears more effective. Finally, our results point out a very
interesting NIDS-specific consideration: the IDS rules which
are by far more complex (i.e. resource consuming) in terms
of HW implementation are associated to traffic classes whose
load is marginal. Such finding questions the effectiveness of a
full-HW IDS implementation, and rather suggest that further
significant resource savings appear in principle possible when
extending the work presented in this paper to traffic-aware
hybrid HW/SW design.
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