
1

On the use of Signed Digit Arithmetic for the new
6-Inputs LUT based FPGAs

G.C. Cardarilli†, S. Pontarelli‡, M. Re†, A. Salsano†
{pontarelli, salsano}@ing.uniroma2.it,
{marco.re, g.cardarilli}@ieee.org

†University of Rome “Tor Vergata”, Department of Electronic Engineering
Via del Politecnico 1, 00191, Rome, ITALY

‡(ASI) Italian Space Agency, Viale Liegi, 26 00198 Rome, ITALY

Abstract— In this paper the use of Signed Digit (SD)
Arithmetic to better exploit some of the architectural
characteristic of the last generation FPGAs is presented.
The implementation of Radix-4 SD adders, multipliers and
Finite Impulse Response (FIR) filters has been carried out
to demonstrate that the use of this number system repre-
sentation optimally fits the 6-input LUT Logic Elements
(LEs) of the newest FPGAs architectures. Comparisons
of implementations of the same circuits by using 4-input
LUT and 6-input LUT based FPGAs have been carried
out showing that Radix-4 SD arithmetic is very efficiently
implemented in the last generation FPGAS.

I. INTRODUCTION

The silicon integrated circuits trend has been
characterized by a steady reduction in the feature
size combined with a steady rise in density and
speed [1]. This trend made possible the release,
in 1985, of the first FPGA, the Xilinx XC2064
chip, with its 1,000 gates of complexity [2]. In
the following twenty years, the FPGAs architectures
evolved in a very fast way. The major evolution has
been related to the structure of the interconnect,
the topology of the LE, and the introduction of
full custom processing elements such as multipliers,
hardware processor cores and high speed multi
standard I/O blocks. On the other hand, when the
FPGA architecture change, also the synthesis algo-
rithms must be modified in order to guarantee an
optimum mapping on the available resources. One
of the major changes in the architecture of the last
generation FPGAs is the use of 6-input LUTs as LEs
core [3]. In this paper it is shown how to exploit this
characteristic by using Radix-4 SD representation
for the implementation of different arithmetic op-
erators and basic DSP blocks. The implementation

results show that by using 6-input LUTs a more
efficient implementation of Radix-4 SD arithmetic
is obtained. This means smaller reconfiguration time
(in case of partial reconfiguration) and a more
efficient use of the interconnect resources. The paper
is organized as follows: in Section II a background
on the SD arithmetic representation is given, while
the characteristic of 6-input LUT based implementa-
tions of basic SD arithmetic operators are discussed
in Section III. In Section IV implementation results
for Radix-4 SD adders, multipliers and FIR filters
are illustrated and compared with the same results
obtained by using the standard two complement
binary representation (TCS) on the same hardware
platform. The conclusions are drawn in Section IV.

II. SIGNED DIGIT REPRESENTATION
BACKGROUND

The general theory of the SD representation is
illustrated in many books ([4], [5]). In this section
its basic elements are shown. In a Radix-r SD
representation, a number x is represented by the
equation

x =
n−1∑
i=0

xir
i (1)

Where, differently from the canonical r radix
polynomial representation, the digit set is xi ∈
{−a, . . . ,−1, 0, 1, . . . , a}, with

⌈
r−1
2

⌉
≤ a ≤ r − 1.

The original motivation for introducing the SD
representation was to eliminate carry propagation
in addition and subtraction [4]. In fact, given two
SD operands x and y, the addition is obtained by

wi = xi + yi − rci (2)

978-1-4244-2182-4/08/$25.00 ©2008 IEEE. 602

2

zi = wi + ci−1 (3)

where

ci =

 1 if (xi + yi) ≥ a
−1 if (xi + yi) ≤ −a

0 if |xi + yi| < a
(4)

being wi ∈ {−a + 1, . . . ,−1, 0, 1, . . . , a − 1}
an auxiliary variable. A carry-free adder is imple-
mented in SD by using a block (ADD1) for the
implementation of equations (2) and (4) and a block
(ADD2) for equation (3). The complete adder is
obtained by connecting ADD1 and ADD2 as shown
in Fig. 1.

Fig. 1. Signed Digit Adder Architecture

III. RADIX-4 IMPLEMENTATION OF BASIC
ARITHMETIC OPERATORS

In Radix-4 SD number system, the input digits
xi and yi and the outputs digits wi belong to the
range [-3,3] and consequently three bits are used
for their representation, while the ci belong to
the range [-1,1]. Therefore the computation of wi

requires three six input logic functions, while the
computation of ci requires two logic functions. The
entire ADD1 block is represented by five six inputs
logic functions and therefore, it can be implemented
by using five 6-input LUTs. For the ADD2 block,
the number of inputs bits is five (three bits for wi

and two for ci−1) while the number of outputs bits is
3. This block is implemented by using three 5-input
LUTs in parallel. It is important to mention that in
the Xilinx Virtex V FPGAs a 6-input LUT can be
also configured as a dual 5-input LUT enhancing the
utilization of this block. Consequently, the ADD2
block is implemented by a 6-input LUT configured
as a dual 5-input LUT and a 6-input LUT. The entire
SD adder is therefore implemented by two levels of
LUTs (the working frequency is 550 MHz, i.e. the

maximum frequency of Xilinx Virtex V FPGAs [1]).
The number of 6-input LUTs to implement the SD
adder is 7N , where N is the number of signed digits
used for the operands representation.

The shift and add implementation of the multi-
plication by a constant (i.e. y = k · x) has been ex-
tended to the signed digit representation in [5]. The
multiplication by the radix r is performed by simply
shifting the digits of x, while the multiplication by
−r is obtained by shifting and inverting its digits. To
minimize the number of adders required for the im-
plementation of the constant multiplier, the number
of non-zero digit must be minimized by factorizing
k (see [6] for details). In the following example
the implementation of a Radix-4 constant multiplier
with k = 75 is shown. The direct implementation
is obtained starting from the following factorization
75 ·x = (64+16− 4− 1) ·x = 64x+16x− 4x−x,
by using three adders. On the other hand, if k is
factorized as 75 = 15 · 5 = (16 − 1) · (4 + 1),
and by introducing the auxiliary variable b the
multiplication requires only 2 adders, in fact

b = 5 · x = 4x + x
c = 15 · b = 16b − b

In Fig. 2 the direct and factorized implementa-
tions for the constant multiplier are shown.

Fig. 2. Example of a Radix-4 Signed Digit constant multiplier
(k = 75)

IV. RESULTS AND COMPARISONS

In this Section the results of the implementation
of Radix-4 SD arithmetic basic operators and DSP
blocks using as a target device a Virtex V FPGA [3]
are presented. To compare these results with respect
to those obtained by using older FPGAs families,
the same implementations have been carried out also

603

3

for Virtex IV and Virtex II FPGAs (both based on
4-input LUT LE). The implementation of the same
arithmetic blocks, by using TCS representation, has
been also carried out. To ensure a fair comparison
of the synthesis results, the placement and routing
parameters have been set to obtain the best results
in terms of speed. The following blocks have been
implemented and analyzed in the following subsec-
tions

• SD adders with different number of digits,
• Constant multipliers with different constant

factors k,
• A 16 taps Low-Pass FIR filter.

A. SD Adder Comparisons
Different Radix-4 SD adders have been imple-

mented by using the ADD1 and ADD2 blocks
as described in Section II. In particular, adders
with 8, 16, 32 and 64 digits, corresponding to a
TCS representation of 16, 32, 64, 128 bits have
been implemented. The implementation results for
the Virtex V FPGA are illustrated in Table I, in
conjunction with the results obtained for an high
speed TCS implementation. In this case the archi-
tectural choice has been left to the synthesizer that
has been configured to obtain a maximum speed
implementation. The maximum working frequency
for the SD and TCS adders versus the operands
wordlentgth is shown in Fig. 3.

N. bit Digit Freq.(SD) [MHz] Freq.(TCS) [MHz]
16 bits 8 digits 580 425

32 bits 16 digits 580 425
64 bits 32 digits 580 334
128 bits 64 digits 580 232

TABLE I

MAXIMUM FREQUENCY FOR SD AND TCS ADDERS (6-LUT

FPGA)

As shown in Table I the SD adder maximum
frequency is independent of the operand wordlength.
Since the maximum frequency matches the maxi-
mum clock frequency allowed for the Virtex V de-
vices [3], these is the best architectural solution for
fast adder implementations using this device. The
TCS speed performance are shown in the second
column of Tab. 1 and exhibits a more complex
behavior

• the adder is slower with respect to the SD also
for very small wordlengths

Fig. 3. Maximum frequency for SD and TCS adders versus the
operands wordlength

• adders with wordlengths up to 32 bits achieve
the same maximum frequency. This is related
to the architecture of the Virtex V FPGAs LEs
that uses fast carry chains from LE to LE.

• For wordlengths greater than 32 bits the max-
imum frequency decreases.

In Table II, the speed gain for a SD adder with re-
spect to the TCS counterpart is shown. This compar-
ison has been carried out for different Xilinx FPGA
families. Also for the Virtex II the SD adders are
faster than those based on TCS arithmetic but in the
Virtex 5 generation this gain increases up to 40%.
This gain is maintained even for small wordlength
SD adders (for example in the 8 digits case). In
Table III the area used for the implementation of the
two adder architectures for different FPGAs families
is shown. The area has been measured in terms of
number of slices and the last column shows that
the use of 6-input LUT based FPGAs permits to
implement Radix-4 SD arithmetic by consuming
less resources.

FPGA Family Speed Gain [%]
Virtex II (4-LUT) 10
Virtex IV (4-LUT) 20
Virtex V (6-LUT) 40

TABLE II

SPEED GAIN OF A A 8 DIGIT SD ADDER FOR DIFFERENT FPGAS

FAMILIES

B. Constant Multiplication Comparisons
In this section the implementation of the constant

multiplier is illustrated. In particular Table IV shows
the result for the two implementations by varying

604

4

FPGA Family Area(SD) Area(TCS) Area(SD)/Area(TCS)
Virtex 5 448 238 1.88
Virtex 4 352 136 2.58
Virtex II 586 238 2.46

TABLE III

ADDER AREA (N. OF SLICES) FOR THE SD AND THE TCS ADDER

(DIFFERENT FPGAS)

the value of the constant factor k. Also in this case
the SD constant multiplier is faster and its maximum
frequency is quite independent from the value of k.

k Freq.(SD) [MHz] Freq.(TCS)[MHz]
257 318 294
4389 321 294
8546 337 302

15189 275 186

TABLE IV

MAXIMUM SPEED FOR THE SD CONSTANT MULTIPLIER AND THE

TCS MULTIPLIER (6-LUT FPGA IMPLEMENTATION)

Fig. 4. Maximum frequency as a function of the value of the constant
factor k

C. FIR filter comparison

In this experiment, a 16 taps low pass FIR filter
in fixed point arithmetic has been implemented. The
number of bits used for the input samples and the
fixed coefficients is 8, while the number of bits
at the multiplier output is 16 (no truncation after
multiplication). The filter has been implemented by
using SD and TCS arithmetic on a Virtex-5 FPGA.
The TCS filter clock frequency is 200 MHz while
the SD based filter can run at 293 MHz, with
50% of speed increment. The SD filter uses more
LUTs, this depends both on the greater complexity

required by the SD implementation and on the in/out
conversions blocks (from the TCS representation
to the SD one and vice versa). The conversion
overhead become negligible as the number of filter
taps increments. In fact, in real cases, FIR filters
need a high number of taps in order to obtain
sufficiently sharp frequency responses.

V. CONCLUSIONS

In this paper the use of SD arithmetic to better
exploit some of the architectural characteristic of
the last generation FPGAs is presented. In particu-
lar Radix-4 SD adders, multipliers and FIR filters
have been implemented to demonstrate how the use
of SD optimally fits the 6-input LUT based LE
of the newest FPGAs architectures (Xilinx Virtex
5). These implementations have been compared
in terms of speed and number of LE with those
obtained by using 4-input LUT based FPGAs. These
comparisons show that the increasing complexity
and flexibility of the FPGAs logic elements can
reduce the resource utilization, making the SD rep-
resentation suitable for these architectures if fast
processing is needed.

ACKNOWLEDGMENT

The authors would like to thank the University of
Rome Tor Vergata Department of Electronics and
the Denmark Technical University Department of
Informatics for the support. The research work has
been also supported by the Otto Mønteds Fond in
the context of a Visiting Professor Sponsorship for
the years 2007-2008.

REFERENCES

[1] ”2007 International Technology Roadmap for Semiconductors”,
http://public.itrs.net/.

[2] http://www.xilinx.com/company/history.htm#begin
[3] Virtex-5 Family Overview LX, LXT, and SXT Platforms
[4] A. Avizienis, ”Signed-Digit Number Representations for Fast

Parallel Arithmetic” IRE Trans. Electronic Computers, vol. 10,
pp. 389-400, 1961.

[5] M. Ercegovac, T. Lang,”Digital Arithmetic”, Morgan Kaufman,
2004.

[6] A.G. Dempster, M.D. Macleod, ”Constant integer multiplication
using minimum adders” Circuits, Devices and Systems, IEE
Proceedings, Volume 141, Issue 5, Oct. 1994 Page(s):407 - 413

605

