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Emerging technologies have attracted a substantial interest in overcoming the physical limitations
of CMOS as projected at the end of the Technology Roadmap; among these technologies, quantum-
dot cellular automata (QCA) relies on different and novel paradigms to implement dense, low power
circuits and systems for high-performance computing. As applicable to existing technologies, a hi-
erarchical process can be utilized to facilitate the design of QCA circuits. Tools and methodologies
both at system and physical levels are required to support all design phases. This article presents
an HDL model to describe QCA “devices” (also referred elsewhere in the technical literature as
building blocks, i.e., majority voter, inverter, wire, crossover) and facilitate the evaluation of their
design. This tool, referred to as HDLQ, allows a designer to verify the logic characteristics of a QCA
system, while supporting within a design environment different operational mechanisms (such as
fault injection) and the unique features of QCA (such as bidirectionality and timing/clocking par-
titioning). The applicability of this design environment to various memory circuits for logic and
timing verification is presented in detail. Various defective conditions for kinks due to thermody-
namic effects and permanent faults due to manufacturing defects are considered for injection.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engineer-
ing—Computer-aided design (CAD); B.6.3 [Logic Design]: Design Aids—Verification

General Terms: Design, Varification

Additional Key Words and Phrases: QCA, HDL, fault injection, CAD

1. INTRODUCTION

As CMOS technology approaches its fundamental physical limits, recent years
have seen extensive research in nanotechnology for manufacturing the next
generation of integrated circuits (ICs) [Compano et al. 1999]. New paradigms
have been proposed to overcome computational limitations by exploiting
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extremely small feature size and high density. Among emerging technologies,
quantum-dot cellular automata (QCA) [Lent et al. 1994; Smith 1999] utilizes
both Coulombic interactions and quantum mechanic tunneling with innova-
tive techniques that radically depart from the CMOS-based processing model
of VLSI. Moreover, QCA not only gives a solution at nano scale, but also of-
fers a new method of computation and information transfer [Orlov et al. 1997]
with low-power operation [Timler and Lent 2003]. Recent developments in cell
manufacturing (involving the deposition of molecules on a substrate surface)
have substantially changed the nature of QCA fabrication [Qi et al. 2003; Jiao
et al. 2003]; in terms of feature size, a QCA cell of a few nanometers in size has
been fabricated through a molecular implementation by a self-assembly process
[Qi et al. 2003]. This QCA fabrication process has received considerable atten-
tion, resulting in a very promising progress for patterning molecular QCA cells
on functional layouts [Hang et al. 2002, 2003].

In addition to advances in cell manufacturing and fabrication, research in
circuit and system-level analysis of QCA has been pursued; different high-
level architectures have been proposed, such as memories [Frost et al. 2002;
Vankamamidi et al. 2005; Ottavi et al. 2005a, 2005b] and microprocessors
[Niemier and Kogge 1999].

High-level modeling and simulation of a relatively small set of cells can be
accomplished using tools to provide a design-flow process, as currently available
for CMOS. For example, Henderson et al. [2004] compares the QCA design flow
to the steps involved in a typical CMOS design process. Similarly to a CMOS
top-down design methodology, CAD and simulation tools must be formulated
for QCA to address high-level requirements such as verification, validation, and
physical-level requirements, for example, the structural model of a cell layout.
A few tools based on the solution of quantum equations for cell interactions
in QCA (MAQUINAS, QCADesigner [Walus et al. 2003, 2004; Walus 2006],
QBART [Niemier et al. 2000; Niemier and Kogge 2001]) have been developed
to analyze the layout of small circuits. However, these tools are not suitable
when, for example, a circuit-level simulation requires new timing mechanisms,
or the number of QCA cells is increased. Therefore, new design environments
suitable for CAD implementation must be devised for QCA. These environments
should be flexible to include additional and novel features; for example, defect-
prone manufacturing at a nanoscale (especially for molecular-based devices)
and small feature size should be included in this process. Moreover, it has
been shown that for some circuits, timing zones are not necessarily placed in a
cascade (one-dimensional) arrangement in the layout, as commonly utilized for
the four-phase adiabatic switching process. New arrangements for information
flow in QCA require trapezoid rules for generating feedback paths in sequential
designs and back-and-forth data movement for storage in an memory line.

The goal of this article is to introduce an HDL-based design tool and as-
sociated environment for QCA circuits. This tool allows us to overcome the
limitations of current simulators with respect to circuit-level evaluation. The
proposed environment, is referred to as HDLQ, is flexible to integrate new fea-
tures for designing QCA circuits. In particular, the proposed model allows the
evaluation of QCA circuits and systems through a structural logic and timing
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Fig. 1. QCA cell and polarization states.

simulation; specific attributes such as bidirectionality of QCA devices and non-
traditional quasiadiabatic switching techniques for timing (as applicable to
QCA memory systems) are introduced in the HDL model.

The article is organized as follows: Section 2 provides an overview of QCA;
in Section 3, circuit design and the proposed HDL model are introduced in de-
tail. Section 4 presents fault injection with two different types of fault/defect
in QCA circuits. Section 5 introduces the application of the proposed tool to
timing; HDLQ is used to evaluate different memory cell architectures requir-
ing nonconventional switching for quasiadiabatic operation. Conclusions are
provided in the last section.

2. REVIEW OF QCA

A QCA cell can be viewed as a set of four charge containers (or “dots”) positioned
at the corners of a square (Figure1). The cell contains two extra mobile elec-
trons that can quantum mechanically tunnel between dots, but not cells. The
electrons are forced to the antipodal corner positions by Coulomb repulsion. If
the two extra electrons are completely localized on dots 1 and 3, the polarization
is + 1 (binary 1); if they are localized on dots 2 and 4, the polarization is −1
(binary 0).

Unlike conventional logic circuits, in which information is transferred by
electrical current, QCA operates by the Coulombic interaction that connects the
state of one cell to the state of its neighbors. The configuration of the polarization
of a set of cells reflects the lowest energy state (ground state). This results in
a technology in which information transfer (interconnection) is the same as
information transformation (logic manipulation) with low-power dissipation
[Tougaw and Lent 1994].

QCA can also be characterized at logic level. One of the basic logic
gates in QCA is the so-called majority voter (MV) with logic function Maj
(A,B,C) = AB + AC + BC. MV can be realized by five QCA cells, as shown in
Figure 2(1b). Logic AND and OR functions can be implemented from the MV
by setting an input (the so-called programming or control input) permanently
to a “0” or “1” value. The inverter (INV) is the other basic gate in QCA and
is shown in Figure 2(1a). The binary wire and inverter chain (as intercon-
nect fabric) are shown in Figures 2(1c) and (1d), respectively. In VLSI systems,
timing is controlled through a reference signal (i.e., the clock), however, tim-
ing in QCA is accomplished by clocking in four distinct and periodic phases
[Hennessy and Lent 2001] (as shown in Figure 2 (2)). In particular, a QCA cir-
cuit is partitioned into serial zones, and each zone is maintained in a phase.
The use of a quasiadiabatic switching technique for QCA circuits requires a
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Fig. 2. (1) Basic QCA devices; (2) Cmos clock signal.

four-phased clocking signal, commonly supplied by CMOS wires buried under
the QCA circuitry, for modulating the inter-dot tunneling barrier. For quasiadi-
abatic switching, the four timing phases are Relax, Switch, Hold, and Release.
During the Relax phase, there is no inter-dot barrier and a cell remains unpo-
larized. During the Switch phase, the inter-dot barrier is slowly raised and a
cell attains a definitive polarity under the influence of its neighbors. In the Hold
phase, barriers are high and a cell retains its polarity. Finally, in the Release
phase, barriers are lowered and a cell loses its polarity. A signal is effectively
“latched” when one clocking zone goes into the Hold phase and acts as input to
the subsequent zone.

3. CIRCUIT DESIGN AND HDL MODEL

A hierarchical process for QCA circuit design has been initially formulated
in Henderson et al. [2004]. With an increase in the size and complexity of
QCA circuits, a brute-force approach based on directly generating the QCA
layout and then simulating its quasiadiabatic switching is not very efficient;
Henderson et al. [2004] advocates the use of structured methodologies based
on a CMOS-like design process such as the immediate embedding of logic func-
tions. It has been widely reported that a design which directly translates CMOS
circuits into QCA is highly interconnection-limited due to the large overhead
in area and clocking.

As an environment, a top-down CMOS process usually starts from the con-
ceptual design until a behavioral model is finally utilized for its evaluation. A
structural logic model is then generated, followed by a transistor (switch-level)
model and layout design. Each step of this process is supported by proper tools
both for design and simulation (e.g., HDL tools for the behavioral and struc-
tural logic levels, CAD and Spice for transistor-level analysis). Similarly, in
Henderson et al. [2004], a multistep process has been proposed for QCA circuit
design. This article focuses on the behavioral and structural logic-level steps of
the QCA design process, and proposes a novel HDL-based model.

With an increasing interest in QCA devices, a few technology-dependent
design and simulation tools are currently available, such as MAQUINAS
[Tougaw and Len 1996], QCADesigner [Walus et al. 2003; Walus 2006], and
QBART [Niemier et al. 2000]. MAQUINAS and QCADesigner simulate QCA
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circuits at the cell level with different degrees of complexity in evaluation. Both
rely on a simulation engine that solves the Schroedinger equation for modeling
physical interactions within the considered set of cells in the circuit; AQUINAS
focuses on the simulation of molecular-based QCA, whereas QCADesigner sim-
ulates metal-based QCA. A shortcoming of simulation with an engine based on
the solution of quantum mechanical equations is its computational complexity;
this heavily impacts the simulation time of tools like MAQUINAS and QCADe-
signer, even when only simple circuits are considered. Other limitations of these
QCA simulators are related to their recent development, and the restricted set
of optional features that are available to a designer in their current release
version. Still, there is a lot of work in progress on these tools, and their fast
development and widespread use have been made possible by the open-source
nature of these software programs [Walus 2006]. Different from these simu-
lation tools, QBART introduces a level of abstraction that can be utilized to
reduce the computational complexity of QCA analysis. QBART defines a grid-
like environment in which QCA devices are instantiated by introducing mostly
adhoc simulation rules. However, it is limited in execution due to the inflexi-
ble nature of the circuit model and its difficulty in changing features such as
timing and signal bidirectionality; QBART differs from the generally accepted
approach that the adoption of a high-level description (HDL) makes possible the
generation of simulation-based models for behavioral and structural logic-level
analysis. However, at the circuit level, many hurdles are encountered for QCA
design, hence a behavioral model is almost a necessity. In particular, there are
three main motivations to justify the development of an HDL-based behavioral
model for QCA:

—It reduces the complexity in terms of both design and simulation times of the
different processes, inclusive of verification, as involved in QCA design.

—It allows flexibility in timing/clocking analysis; for example, it can be used to
analyze clocking schemes that do not follow the strict sequentiality of four-
phase clocking for quasiadiabatic switching. Examples of these schemes are
encountered for the line-based memory schemes introduced in Vankamamidi
et al. [2005] and Ottavi et al. [2005a].

—It allows us to model the testing and validation of a QCA system [Tahoori
et al. 2004].

—It permits the introduction of new capabilities in the design process, such as
fault injection.

Figure 3 shows the flowchart of the proposed behavioral and logic de-
sign environment of HDLQ. A detailed database, of QCA devices is required
to provide the physical information. From the database, for example, man-
ufacturing defect models and a library of QCA devices can be extracted; a
complete QCA library inclusive of fault models can be established through
a low-level simulation performed using available tools, such as QCADe-
signer and MAQUINAS. Previous works have reported novel QCA devices
and defects that can be included in this library [Huang et al. 2005]. An ex-
tended set has been considered in HDLQ to provide the designer with a
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Fig. 3. QCA design flowchart.

wide range of options for selecting QCA devices at design time. In particu-
lar, the set considered in the HDLQ library is derived from that generated
in Momenzadeh et al. [2005] and departs from similar sets considered in previ-
ous works [Berzon and Fountain 1999; Henderson et al. 2004]. As for the defect
models, the reference model is that reported in Momenzadeh et al. [2005] and
established through QCADesigner-based simulations.

By utilizing an HDL simulation approach, the design flow can then proceed
with timing and logic analysis inclusive of verification and by utilizing the
device library (Figure 3). The basic operation of HDLQ is as follows: After par-
titioning the design into QCA devices, the Verilog code is built with primitive
block models. Input and clock waveforms are then handled in the test-bench
file. Following this step, HDLQ allows the designer to proceed with a fault
injection-oriented logic synthesis. The HDL QCA library inclusive of fault mod-
els provides the designer with the capability of verifying the QCA design and
assessing relevant features, such as obtaining a test set, validating its defect re-
silience, and checking its timing/clocking mechanism, as required, for instance,
for QCA memories [Ottavi et al. 2006].

VHDL and Verilog are the most widely used HDL standards. Verilog HDL
has been utilized in this work to build a QCA device library for assembling dif-
ferent circuits with the objective of using it for fast assembly of larger designs.
In Henderson et al. [2004], a QCA design environment was introduced by us-
ing a VHDL-based simulation tool in which QCA blocks can be assembled and
simulated in their own clocking zones. However, in Henderson et al. [2004],
the VHDL model is limited mostly to fixed timing features for simulating
QCA circuits; moreover, its structure does not include additional features
such as fault injection. This work expands on Henderson et al. [2004] by
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generating a comprehensive HDL engine to allow for simulation of new tim-
ing schemes [Vankamamidi et al. 2005; Ottavi et al. 2005a], and for runtime
injection of defects, permanent faults [Momenzadeh et al. 2005], and transient
faults caused by thermodynamic effects, which result in kinks on long QCA
wires. Furthermore, the proposed environment allows flexibility in QCA mod-
eling to include bidirectionality of devices; this feature was not addressed in
Henderson et al. [2004]. These features of HDLQ are described in detail next.

3.1 Bidirectional Flow and Timing Simulation

One of the most challenging aspects in describing QCA devices using HDL is in-
formation flow with respect to the definition of the timing/clocking mechanism.
Different from CMOS, QCA devices are bidirectional, thus requiring careful
handling when used with the fixed input/output structure of HDL modules.
This characteristic is important when novel clocking schemes are applied to
QCA, mostly at the circuit level [Vankamamidi et al. 2005; Ottavi et al. 2005a].
Therefore, different from Henderson et al. [2004], the library in HDLQ includes
both unidirectional and bidirectional implementations, as well as the rele-
vant logic and physical features of each QCA device. The bidirectional modules
rely on the extensive definition of “inout” ports; they are organized such that
simultaneous occurrences (i.e., concurrence) of opposite signals on the same net
never happen, irrespective of the adopted design structures. This conforms to
the actual behavior of QCA circuits because QCA devices are set to an undeter-
mined value prior to the switch phase.

As for timing, a continuous-time simulation is not easy to implement in
Verilog. However, a model of the signal propagation mechanism through
different timing zones has been proposed and implemented. In the pro-
posed environment, every QCA device from the device set introduced in
Momenzadeh et al. [2005] is described by a Verilog module that is defined in
its clock state by an input (four-valued clock) variable. Under a quasiadiabatic
switching mechanism, this is given as follows.

—When a device is in the Release or Relax phase, its outputs are in a high-
impedance state (denoted by Z ).

—When the Switch phase is entered, computation is performed, and the logic
outputs reflect the operation on a time-dependent basis for the inputs of the
device.

—When the device is in Hold phase, the last attained logic value is locked at
the output for the duration of the whole phase.

A detailed description of the code implementing a majority voter is provided
in Ottavi et al. [2006] for the interested reader.

3.2 Fault Injection

As stated in Clark and Pradhan [1995], “[F]ault-injection involves the deliber-
ate insertion of faults or errors into a computer system in order to determine its
response. It has proven to be an effective method for measuring the parameters
of analytical dependability models, validating existing fault-tolerant systems,
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synthesizing new fault-tolerant designs, and observing how systems behave in
the presence of faults.” This statement provides the motivation for fault injec-
tion to nanotechnology-based systems; it is widely acknowledged that systems
at the nano scale will have a high probability of failure due to manufacturing
defects or thermal runtime faults. A capability for fault injection has been intro-
duced in the proposed simulation engine and design environment to properly
simulate the effects of manufacturing defects [Momenzadeh et al. 2005]. This
has also been used to perform a time-dependent fault injection of a transient
fault that is modeled by the so-called kink effect (i.e., the inversion of a logic
value on a line).

Fault injection through the HDL model is accomplished at the logic level.
Starting from the fault set [Momenzadeh et al. 2005], the Verilog model of each
QCA device is characterized by a number of auxiliary inputs; this is required
for unambiguously identifying the effects of faults on a device that is not fault-
free. As an example, consider straight or L-shaped wires in QCA. As shown
in Momenzadeh et al. [2005], these wires can only be affected by one type
of logic fault, namely, the inversion of the output. Therefore, only one more
input signal is added to the block for discriminating between fault-free and
faulty conditions. The majority voter can be affected by two types of logic fault
[Momenzadeh et al. 2005]. Therefore, two inputs are necessary to distinguish
the fault-free condition from the two faulty behaviors, namely, fault0 and fault1.
So, (fault0 = 0, fault1 = 0) is the fault-free configuration; (fault0 = 0, fault1 =
1) is the stuck-at-B fault, modeling a missing cell deposition defect on one of the
other input cells; (fault0 = 1, fault1 = 0) is the fault changing the MV function
to F = MV(A′, B, C′) = A′C′ + A′B +C′B for modeling a missing cell deposition
defect in the central cell of the MV.

4. FAULT INJECTION

Hereafter, two examples of fault injection are reported; sample layouts are used
to identify the capabilities of HDLQ for fault injection. The first example is the
simulation of a time-dependent transient fault on a long wire due to a kink
induced by thermal noise. The second example reports the simulation of a layout
of an XOR circuit affected by a permanent defect, such as an additional/missing
cell placement at manufacturing. Fault injection allows us to define the impact
of faults of different nature on a QCA design, as well as to determine the test
vectors for detection (as shown in Figure 3).

4.1 Kink On a QCA Wire

To show the effects of a fault of transient nature, a QCA circuit with three long
wires as inputs to an MV is considered; the fault results from the occurrence
of a kink due to thermal effects. It is assumed that the wires cross multiple
clocking zones.

The Verilog model allows injecting the transient fault on a long line by setting
an input variable “fault” on the desired wire-type module. Due to its transient
nature, and to correctly model a kink, the fault signal should be set to a bit
value of 1 in the test-bench file for the duration of a Switch phase. In Figure 4,
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Fig. 4. Waveforms showing the effect of a kink in long wires.

Fig. 5. XOR circuit in QCA.

the fault-free condition is marked by “A”: The inputs x and w are at bit value
of 1, while the input y is at bit value of 0; thus the majority output is at bit
value of 1. When a kink (“B” in Figure 4) is issued through a signal fault 4,
this causes the occurrence of a transient fault on a QCA wire (and therefore,
its value is complemented prior to reaching the connecting device); in this case,
the output temporary switches to a bit value 0 (“B” in Figure 4), before taking
again a bit value of 1 when the kink effect is over (“C” in Figure 4). This shows
that HDLQ permits us to model the effects of faults of a transient nature, while
capturing their logic behavior.

4.2 Permanent Defect in a QCA Circuit

As an additional example, the XOR circuit in QCA is shown in Figure 5
[Momenzadeh et al. 2005]. Its logic block diagram is given in Figure 6; this dia-
gram also shows the timing zones and all QCA devices. A complete fault analysis
of this circuit has been presented in Momenzadeh et al. [2005]. Consider the
set of possible faults for the majority voter MV3. In Momenzadeh et al. [2005],
it has been shown that an additional cell deposition defect does not cause a
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Fig. 6. Block diagram of XOR circuit in QCA.

faulty behavior in the MV. However, a missing cell deposition defect can affect
functionality of the MV (F (MV)) in two different ways:

(1) F (MV) = B, where B is the polarization of the QCA input cell located in a
symmetric position with respect to the output cell of the MV.

(2) F (MV) = (A′, B, C′), instead of the fault-free F (MV) = (A, B, C) = AB +
CB + AC.

Both of these logic faults propagate to the XOR primary output and can be
tested by using the vector set D in1D in2 = (00, 11).

Figure 7 shows the effect of a permanent fault that changes the functionality
of MV3 in Figure 6 into a stuck-at-B, where B = 1; the bottom part of Figure 7
refers to the fault-free case. When the input vector 00 is sampled (this event is
denoted as “A” in Figure 7), after the required latency, the output is given by
signal m34 in Figure 7 and takes a value of 0. The behavior of the faulty circuit
is shown in the top part of Figure7; the output remains at the erroneous value
of 1.

Similarly, the behavior of the circuit can be simulated by considering defects
in other QCA devices.

5. TIMING SIMULATION

Examples of the application of the proposed HDL methodology to timing simu-
lation of memory elements are reported in this section so as to outline in detail
the applicability of the proposed HDL environment. As representative of differ-
ent timing features, memory cells for three QCA-based memory designs have
been considered.

—A loop scheme for serial write/serial read memory architectures similar to
Berzon and Fountain [1999] and Walus et al. [2003].
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Fig. 7. Waveforms obtained by injecting a permanent fault on the output MV of XOR.

—A hybrid memory architecture for serial write/parallel read operations
[Ottavi et al. 2005a].

—A line-based memory [Vankamamidi et al. 2005; Ottavi et al. 2005a].

For each of these architectures, the following features are presented:

—A layout of the basic cell.
—A block diagram showing the organization of the module in a Verilog-based

simulation with the HDLQ library introduced previously in this article.
—The waveforms obtained by the Verilog simulation in ModelSim.

5.1 Loop-Based Memory Cell

Figure 8 shows the QCA implementation of a memory cell based on the classic
“memory-in-motion loop” structure. QCA-based realizations of similar archi-
tectures have been presented in Berzon and Fountain [1999] and Walus et al.
[2003] for serial write/parallel read memories. Only the core of the memory cell
is considered, that is, the addressing circuitry is not considered.

Clocking zones are derived from the same clock (shown in Figure 2(2)), with
a phase displacement of π

2 . Therefore, when Zone 1 is in Hold, Zone 2 is in
Switch, Zone 3 is in Release, and Zone 4 is in Relax. The loop is realized such
that once the information bit enters the loop, it is forced to traverse the QCA
devices in all four phases, as indicated in Figure 9. Figure 10 shows the wave-
forms obtained by simulating the Verilog model of the serial memory loop with
ModelSim [Graphics 2006]. After having initialized to zero the bit stored in the
loop, the following repetitive sequence of operations takes place to verify the
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Fig. 8. QCA loop-based memory cell layout. Each shade corresponds to a different clocking zone.

correctness of the model:

—Write a 1 (this event is denoted as “A” in Figure 10);
—store the previous value, allowing a possible read operation being performed

in the same clocking cycles (“B” in Figure 10);
—write a 0 (denoted as “D” in Figure 10); and
—store the previous value, thus allowing, (again) a possible read operation.

As shown in Figure 9, the information bit (d in) is latched when Zone 1 is in the
Switch phase, and it enters the loop after the MV operation. This last operation
occurs when Zone 4 is in the Switch phase (four clock cycles after the clock’s
command) and the loop’s output (out) has been arbitrarily assigned to a QCA
device in the second clocking zone. Two additional clock cycles must be added
to the write operation for latency. Therefore, the bit value 1 is written to out six
clock cycles after the “write a 1” instruction is given to the serial memory (“C”
in Figure 10). Similarly, bit value 0 is written to out six clock cycles after the
“write a 0” instruction is given to the memory circuit; these events are denoted
in Figure 10 as “E” and “D,” respectively.

5.2 Hybrid Memory Cell

Figure 11 shows the QCA realization of a hybrid memory (serial write/parallel
read) [Ottavi et al. 2005a]. Similar to the loop structure, data is serially written
and stored through the multizone memory loop. In the hybrid memory, N = 2n

words of m bits each (are) organized in m parallel loops, hence capable of storing
N bits each, that is, N arrays of four QCA devices, each assigned to a different
clocking zone. To perform either the serial write or the parallel read operation,
an offset must be added to the input address to select the correct bit (word). A
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Fig. 9. Block diagram of the loop-based memory model.

Fig. 10. Waveforms for the loop-based memory model.

2n-bit counter is therefore used: For a write operation, the desired value in the
correct location inside a word can take up to 2n − 1 clock cycles and the counter
is used to enable the write operation only at the desired cycle; for a parallel
read operation of the m-bit word, the counter is used to select desired outputs
in the 2n-bit loop structures.

Figure 12 shows the schematic implementation of a hybrid-memory cell with
Verilog QCA library modules and its organization in terms of clocking zones. As
an example, four words (N = 4) are considered in the memory; therefore, four
bits must be stored in the loop. These bits are made accessible during a read
operation. As for the QCA devices used in the loop, one MV connects the loop to
the peripheral circuitry, while all other devices are either straight or L-shaped
wires. Fanouts are used to generate the outputs (out[0 − 3]).
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Fig. 11. QCA hybrid-memory cell layout. Each shade corresponds to a different clocking zone.

Fig. 12. Block diagram of the hybrid-memory model.

Figure 13 shows the waveforms obtained by ModelSim [Graphics 2006] for
the Verilog model of the hybrid memory cell. The four bits stored in the loop
are initialized to 0 and then serially written to a bit value of 1. The signal
bits stored consists of the concatenation of bits out[0 − 3]; the four bits belong
to four different words and in this case, for ease of presentation, they are read
together. As shown in the waveforms, there is a latency prior to writing a bit
in the memory after the write signal is issued. In this simplified model, the
addressing circuitry is not fully described [Ottavi et al. 2005a]; the input data
(d in) requires three full clock cycles for propagation to the first memory cell bit
corresponding to out0 in Figure 12, that is, this is equal to the distance in cycles
between a Zone 1 in a Switch phase and the following Zone 4 in a Switch phase.
To write the nth bit of the memory cell, 4(n − 1) clock cycles must be added to
this initial offset. As an example, in Figure 13, 3 + 3 × 4=15 clock cycles are
required to write the fourth bit of the memory when bits stored reaches the
value “1111”.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 2, No. 4, October 2006.



HDLQ: A HDL Environment for QCA Design • 257

Fig. 13. Waveforms for the hybrid-memory model.

Fig. 14. QCA line-based memory cell layout. Each shade corresponds to a different clocking zone.

5.3 Line-Based Memory Cell

Figure 14 shows the QCA circuit for realizing the storage element in a line-
based memory. The clock signals for the required switching mechanism are
also provided. This design relies on the bidirectional nature of QCA devices.
The MV ports are connected to Z and Z ′ and are used either as input or output,
according a to the phase of the timing zone and the neighbors of the MV. The
behavior of this cell can be described as follows for the four steps of a memory
operation [Vankamamidi et al. 2005].

—Step 1: Zone 1 and Zone 2 are in the Switch phase, while Zone 3 is in the
Hold phase. The stable inputs X and Y come from an adjacent clocking zone
in the Hold phase and propagate to the MV. At the same time, Z ′ behaves as
an input to the MV; in this case, Z assumes the value given by by the triplet
(X , Y , Z ′). The value of Z ′ represents the value stored in the memory cell
after a previous write operation, that is, in the Hold phase for Z (if X and
Y have different values), or overwritten to a new value (for both X and Y of
the same value).

—Step 2: While Zone 3 is in the Relax phase, Zone 1 goes into the Hold phase,
and Zone 2 is still in the Switch phase. Therefore, the value that was written
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Fig. 15. Clocking scheme for QCA line-based memory cell.

in Z during the previous step is propagated to Z ′, that is, it is ready to be an
output in the next read operation.

—Step 3: Zone 1 is in the Relax phase, while Zone 2 is in the Hold phase. Zone
3 is in the Switch phase, therefore Z ′ is propagated to the output stage of the
memory cell.

—Step 4: In this step, Zone 3 is in the Hold phase, and the value stored in the
cell is available for a possible read operation.

The clocking arrangement is shown in Figure 15 and implemented in
HDL by a simple program for its simulation, while neither QCADesigner
[Walus et al. 2003; Walus 2006] nor AQUINAS [Tougaw and Len 1996] can be
utilized.

Figure 16 shows the partition of the QCA memory cell as introduced in a pre-
vious section. All blocks denoted by “bi” correspond to bidirectional realizations
from the HDLQ device library. Bidirectional devices have been used for the MV
in the memory cell and all transmission paths to nodes Z and out. This last
node connects the cell to the read circuitry. After partitioning the design into
devices, the Verilog code is built with primitive block models. Input and clock
waveforms made of different duty cycles for the considered clocking zones are
then handled in the test-bench file.

The resulting waveforms from ModelSim [Graphics 2006] are shown in
Figure 17. Signals zone[1 − 3] refer to the corresponding clocking zones, while
X and Y are the inputs, Z is the node in which the bit is stored after the MV,
and out is the cell output. As shown in Figure 17, the operations performed on
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Fig. 16. Block diagram of the line-based memory model.

Fig. 17. Waveforms for the line-based memory model.

a memory cell are as follows:

—Write a 1 as bit value (event denoted in Figure 17 as “A”);
—retain the stored value to allow a possible read operation (“B” in Figure 17);
—write a “0” (“C” in Figure 17); and
—retain the stored value.

The output (out) is latched and, therefore, ready for a possible read operation
when Zone 3 goes in the Switch phase. Since the clocks connected to different
zones have different duty cycles, the clock signal of “Zone 2” is considered as a
reference, its selection having been based on the fact that it is the only signal
with a 50% duty cycle. Therefore, the output is written with a bit of value 1 (“D”
in Figure 17) six clock cycles after the “write a 1” operation (“A”). Similarly, the
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memory is reset to a bit of value 0 (“E” in Figure 17) after six clock cycles of
latency (computed from event “C” in Figure 17).

6. CONCLUSION

Quantum-dot cellular automata is a new paradigm for nanoscale systems; QCA
is radically different from CMOS VLSI technology. However, a design process
flow similar to CMOS can be considered for QCA [Henderson et al. 2004]. Even
though tools have been developed for designing QCA circuit layouts, such as
QCADesigner, the capability of utilizing a well-known and widely accepted
methodology at a higher level can be beneficial for designing complex QCA
circuits.

This work has introduced an HDL-based tool to model QCA circuits at the
logic level, and this tool is referred to as HDLQ. In HDLQ, a library of QCA de-
vices has been developed in Verilog by allowing the designer to simulate large
QCA circuits. By maintaining technology-related features, such as bidirection-
ality, and proper fault characterization, this tool guarantees fast verification at
the behavioral/structural level. It also allows timing simulation based on the
simultaneous use of clocking schemes with different frequency and duty cycles
for the zones. This feature at present is not available in current simulators,
such as QCADesigner.

Furthermore, HDLQ provides the ability to inject faults and defects, for ex-
ample, by utilizing the QCA device fault set defined in Momenzadeh et al.
[2005]. This feature is required for fault-tolerance design and can be used to
generate test sets for a QCA circuit.
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