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ABSTRACT

In this paper optimized Residue Number System (RNS) arith-
metic blocks to better exploit some of the architectural char-
acteristics of the last generation FPGAs are presented. The
implementation of modulo m adders, constant and general
multipliers, input and output converters is presented. These
architectures are based on moduli sets chosen in order to op-
timally use the six inputs Look-Up Tables (LUTs) available
in the Complex Logic Blocks (CLBs) of the new generation
FPGAs. Experiments based on the implementation of Fi-
nite Impulse Response (FIR) filters characterized by differ-
ent number of taps and wordlengths shows that the use the
RNS together with suitable moduli sets optimally fits the six
inputs LUTs of the last generation FPGAs architectures.

1. INTRODUCTION

The silicon integrated circuits trend is characterized by a
steady reduction in the feature size combined with a steady
rise in density and speed as shown in [1]. In the last twenty
years FPGAs evolved rapidly in terms of complexity and ar-
chitecture starting from the first FPGA, the Xilinx XC2064
chip with its 1,000 gates of complexity [2] to the newest gen-
erations. The major evolution was related to the structure of
the interconnect, the topology of the basic cell (LE i.e. the
Logic Element), and the introduction of full custom process-
ing elements such as multipliers, hardware processor cores,
MAC units, and very high speed serial I/O blocks. One of
the last innovation in the FPGAs architecture, has been the
introduction of 6-inputs LUTs as the main block for the im-
plementation of combinatorial functions [4], [3]. Moreover,
changes in the FPGAs architecture require changes in the
synthesis algorithms in order to guarantee an optimum map-
ping on the available resources. In this paper, the use of a
RNS representation based on suitable moduli sets is used to
optimally implement the basic arithmetic operators by us-
ing six-inputs LUTs. In particular it is shown that the use
of moduli that are represented by five bits offers the best

results in terms of used resources and delay. For this rea-
son the moduli set that has been used used for the synthesis
experiments is composed by five bits moduli and the big-
ger modulo has been choses as a power of two. In this way
dynamic ranges of up to 34 bits are obtained. The paper is
organized as follows: in Section II a background on the RNS
arithmetic is given. In Section III architectures and perfor-
mance of 6-inputs LUT based implementations of modulo
m arithmetic operators such as adders, constant multipliers
and general multipliers are discussed. Section IV illustrates
the implementation of the input and output converters, while
in Section V a set of experiments based on the implementa-
tion of FIR filters are shown discussing the obtained area
and speed results. Conclusion are drawn in Section VI.

2. BACKGROUND ON RESIDUE NUMBER
SYSTEM

A Residue Number System (RNS) is defined by a set of rel-
atively prime integers:

{m1,m2, ...,mP }

The dynamic range of the system is given by the product of
the moduli mi

M =
P∏

i=1

mi

Any integerX ∈ [0,M−1] has a unique RNS represen-
tation given by

X
RNS−→ (〈X〉m1

, 〈X〉m2
, . . . , 〈X〉mP

) (1)

where 〈X〉mi
= X mod mi

A comprehensive description of the RNS theory and its
application to computer systems can be found in [6], [7], and
[8]. In the RNS representation, operations, such as addition
and multiplication, are executed in parallel on the different
moduli



Z = X op Y RNS−→


〈Z〉m1

= 〈Xm1 op Ym1〉m1

. . .
〈Z〉mP

= 〈XmP
op YmP〉mP

(2)

where eq. (2) is valid if the final results prior the conver-
sion in the two’s complement representation (TCS) belongs
to the range [0,M − 1]. The conversion of Z in TCS is
accomplished by the Chinese Remainder Theorem (CRT)

Clearly, conversions the from the binary representation
to RNS, and vice-versa, constitute an overhead for systems
based on the RNS representation. However, efficient meth-
ods to perform those conversions have been presented in [9],
[10], and [11].

The input conversion is obtained by the reduction mod-
ulo mi of the input samples x(n), providing the residue dig-
its xmi

. The mod. mi RNS filters compute the residues ymi

defined in eq. (4), while the output conversion based on CRT
computes back y(n).

3. MODULO OPERATIONS BASED ON SIX INPUTS
LUTS

In FPGAs, the LEs are based on LUTs and, in particular,
the last generation FPGAs are characterized by LEs con-
taining six inputs LUTs (useful to implement six input one
output combinatorial functions) that can be also configured
as double 5 inputs LUTs (useful to implement five inputs
double output combinatorial functions) ([4], [5]). Conse-
quently, in the paper, the moduli set is chosen such that the
moduli range belongs to the interval [17, 64], moreover they
must be coprime and usually it is convenient to use a power
of two (such as 2n with n = 5 or n = 6) as the bigger mod-
ulus. In the rest of the paper the following arithmetic blocks
are analyzed

1. Modulo m adders

2. Constant multipliers (constant coefficients FIR filters)

3. General multipliers (variable coefficients FIR filters)

3.1. Modulo m adders

If a modulo m is chosen such that 2n−1 < m ≤ 2n, the
range of the results generated by operations mod. m are in
the range [0, 2n−1] and therefore n bits are used to represent
the results. A fast architecture can be used to implement the
addition modulus m as shown in Fig. 1

It is composed by a two operands adder, a three operands
adder and a multiplexer. The two operands n-bits adder
computes S1 = X + Y , the three inputs n-bits adder com-
putes S2 = X + Y −m and the 2 × 1 multiplexer selects
S1 or S2 depending on the the carry out of S2.

MUX

n-bits 
ADDER

n-bits 
ADDERY

X

-m

Cout

S1

S2

Fig. 1. The parallel modulo m adder.

In this paper a different architecture to compute 〈X + Y 〉m
is presented obtaining a delay comparable to that of the par-
allel architecture by using less resources. The architecture is
shown in Fig. 2 whereX and Y are added obtaining S. This
value is used to address a ROM (based on six inputs LUTs)
containing 〈S〉m.

n-bits 
ADDER

Y

X
2n+1X n ROM
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n n+1 n
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Fig. 2. The ROM based modulo m adder

For a 5 bits modulo, the size of the ROM is 26 · 5, cor-
responding to 5 six inputs LUTs, while for a 6 bits modulo
the size of the ROM is 27 · 6, corresponding to 12 six inputs
LUTs. The growth of the ROM size is exponential, but for
m up to 64 this structure is slightly convenient with respect
to the parallel implementation as shown in Table I. This ta-
ble shows the synthesis results in terms of number of LUTs
and delay for different values of five and six bits moduli in
comparison with the parallel implementation.

m Parallel mod. Adder ROM based mod. Adder
delay(ns) #LUT delay(ns) #LUT

19 1,59 15 1,53 10
31 1,62 15 1,55 10
35 1,77 18 1,77 18
63 1,71 16 1,62 15

Table 1. Area and delay of parallel and ROM based modulo
adders implemented on a Xilinx Virtex V FPGA

In the case of five bits moduli this implementation gives
33% of resource savings maintaining the same delay, while
for six bits moduli the results in term of used resources and
delay are similar and there are no advantages.

3.2. Modulo m Multipliers: variable coefficients, con-
stant coefficients

In this section, constant coefficients and general multipliers
are analyzed.



1. Modulo m constant multipliers. They are used to
implement RNS FIR filters with constant coefficients.
If n is the number of bits to represent m, 〈X ·K〉m
requires n output bits. If n = 6, it can be implemented
by using a 26×6 ROM that, in the case a Xilinx Virtex
V FPGA is implemented by using 6 six inputs LUTs
with a critical path of about 0.8 ns.

2. General multipliers. In this case, being m a prime
number (6 bit) the isomorphism technique [6] can be
used to perform the multiplication. This technique is
based on the algebraic properties of the structure com-
posed by the modulo m addition and multiplication
and the numbers in the interval [0,m− 1]. In fact the
ring is a finite field and therefore

(a) each element different from zero has a multi-
plicative inverse

(b) it exists an element of the field, called α, such as
∀x ∈ [1,m− 1] ∃ i | αi = x and αm = α

The modulommultiplication of two numbers becomes
〈x× y〉m =

〈
αi × αj

〉
m

=
〈
αi+j

〉
m

. Becauseαm =
α the addition of i+j is performed modulom−1. The
architecture of the isomorphic multiplier is shown in
Fig. 3.
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Fig. 3. The modulo m multiplier based on the isomorphism
technique

The blocks named Log (based on LUTs) performs the
association between the value X and Y and the correspond-
ing indexes i and j, while the block αk performs the in-
verse association between the result of 〈i+ j〉m−1 and the
value αk. Some additional logic allows resolving the case
in which one or both the operands are zero. The modulo
m − 1 adder can be implemented by either the parallel and
the ROM based modulo adder. If the ROM based modulo
adder is used, two ROMS, the first performing the operation
〈 〉m−1, the second performing the inverse isomorphism, are
used as shown in Fig. 4.

The two ROMs can be combined in a single ROM per-
forming both the operations. This implementation requires
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Fig. 4. The isomorphic based modulo m multiplier with
ROM based Modulo addition

the use of about 30 LUTs, with a maximum delay of 3.04ns.
Instead, the parallel implementation requires 36 LUTs with
a maximum delay of 3.78ns. Therefore, by embedding the
two ROMs in a single ROM the architecture is about 20%
faster and shows a 15% of resource savings.

4. FIR FILTER IMPLEMENTATION

A N taps FIR filter is described by

y(n) =
N−1∑
k=0

hk · x(n− k) (3)

Its fixed point implementation, in transposed or direct
form, is obtained by using multipliers adders and registers.
In particular, in parallel implementations, the reduction of
the used resources is usually accomplished by truncating the
multipliers outputs. The number of truncated bits is the re-
sult of a fixed point optimization phase that is based on a
trade of between resource savings and signal to noise ratio
worsening. The implementation of RNS FIR filters is a di-
rect consequence of eq. (2) and eq. (3) becomes

〈y(n)〉m1
=

〈
N−1∑
k=0

〈
〈hk〉m1

· 〈x(n− k)〉m1

〉
m1

〉
m1

. . .

〈y(n)〉mP
=

〈
N−1∑
k=0

〈
〈hk〉mP

· 〈x(n− k)〉mP

〉
mP

〉
mP

(4)
The filter is implemented in RNS by decomposing it into

P FIR filters working in parallel, as sketched in Fig. 5 (P=3).

4.1. Modulo mi filters

The architecture of the mod mi filters (based on eq. (4)) is
depicted in Fig. 6. where, the shaded area, is filter basic
building block (the mod. mi tap).
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Fig. 5. RNS implementation of a FIR filter
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Fig. 6. Architecture of a modulo mi FIR filter

The filter tap computes the following equation

sout(j) = xmi
· hj + sin (5)

where sin = sout(j − 1) and mi 6= 2n. Also in this case,
the filter tap has been optimized by using a method simi-
lar to that used for the general multiplier presented in the
previous section. Moreover, in the following, the analysis is
restricted to moduli being prime numbers in order to make it
possible the use of the isomorphism technique. For constant
coefficients filters, the filter tap (Fig.6) requires a ROM and
a modular adder that can be either a parallel or a ROM based
adder. Equation 5 can be rewritten as

sout(j) = hj · (xmi
+ h−1

j · sin) = hj · s̃out (6)

where s̃out = xmi
+ h−1

j · sin and h−1
j is the multiplicative

inverse of hj mod. mi.
For consecutive slices the filter coefficients h−1

j+1 and hj

can be combined as

sout(j + 1) = hj+1 ·
(
xmi

+ h−1
j+1 · sout(j)

)
=

hj+1 ·
(
xmi

+ h−1
j+1 · hj ·

(
xmi

+ h−1
j · sout(j − 1)

))
= hj+1 ·

(
xmi + h̃j · s̃out(j)

)
(7)

where h̃j = h−1
j+1 · hj . In this way for the intermediate

slices the tap can be implemented as depicted in Fig. 7.
The operation

〈
h̃j · (xmi + s̃j)

〉
mi

, where h̃j is a con-

stant factor is implemented by using a ROM based modular
adder. In the ROM precomputed values of

〈
h̃j · (xmi + s̃j)

〉
mi

xmi(n)

Delay+

h̃j

Xs̃j s̃j+1

Fig. 7. Optimized slice of a modulo mi FIR filter with con-
stant coefficients

are memorized. For a 5 bits modulo the resource usage is 10
LUTs and the delay is about 1,5 ns, while for a 6 bits mod-
ulo the resource usage is around 16 LUTs and the delay is
about 1,7 ns. In Fig. 8 the architecture of a tap in case of
variable coefficients filter is shown.
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Fig. 8. Optimized architecture of a slice for a modulo mi

variable coefficients FIR filter

The Log operators are implemented by 2n×nROMs, the
E operator is a 2n+1 × n ROM performing modulo reduc-
tion and exponentiation, the 〈 〉mi

operator is ROM based,
the adders are n-bits adders, while the critical path is com-
posed by two adders and three ROMs. The first optimization
consists in sharing the Log operator that is the same for all
the slices composing the modulo mi filter. The second op-
timization is obtained by balancing the paths of the slices
moving the ROM implementing the 〈 〉mi

operator after the
delay element. In this way the critical path is reduced to two
ROMs and two adders.

5. FIR FILTERS EXPERIMENTS

In this section a set of experiments for the characterization
of FIR filters are described.

Two cases have been selected: 8 bits and 12 bits both for
the coefficients and input samples while, the number of filter
taps vary from 16 to 256. The analysis has been restricted
to constant coefficient filters, but it can be easily extended
to variable coefficient filters. The set of moduli is composed
by a power of two modulo (2n, n up to 9) and the remaining
moduli are prime numbers that can be represented by 5 bits.
In table II the set of synthesized filters are shown.

For dynamic ranges up to 23 bits 4 moduli have been
used while for the biggest dynamic range (32 bits) 7 moduli



FIR Input/Coeff (bits) N. taps M(Bits) Moduli set
FIR1 8 16 20 64,31,29,23
FIR2 8 32 21 128,31,29,23
FIR3 8 64 22 256,31,29,23
FIR4 8 128 23 512,31,29,23
FIR5 8 256 24 64,31,29,23,19
FIR6 12 16 28 64,31,29,23,19,17
FIR7 12 32 29 128,31,29,23,19,17
FIR8 12 64 30 256,31,29,23,19,17
FIR9 12 128 31 512,31,29,23,19,17

FIR10 12 256 32 64,31,29,23,19,17,13

Table 2. Description of the set of FIR filters synthesis ex-
periments

are required. In Table III the results in terms of resources
and speed performances for the set of synthesized filters are
listed. The maximum frequency for the 8 bits filters (from
FIR1 to FIR5) is bounded by the maximum operating fre-
quency of the filter tap (about 435 MHz), while for the 12
bits filters (from FIR6 to FIR10) the maximum working fre-
quency of the filter is limited by the input converter speed
(300 MHz).

FIR Max. freq. Taps In converter Out converter Total resources
(MHz) (#LUTs) (#LUTs) (#LUTs) (#LUTs)

FIR1 400 592 30 182 804
FIR2 400 1248 30 182 1460
FIR3 400 2688 30 182 2900
FIR4 400 6144 30 182 6356
FIR5 400 12032 40 224 12296
FIR6 303 912 70 270 1252
FIR7 303 1888 70 270 2228
FIR8 303 3968 70 270 4308
FIR9 303 8704 70 270 9044
FIR10 303 17152 84 309 17545

Table 3. Resource usage and speed for the experiments

In this table, the resources for the implementation of the
input and output converters have been evaluated showing
that it become less than 10% for N > 64 (see FIR3 and
FIR8).

Finally, the results of the synthesis of the RNS filters
have been compared to a TCS implementation (no trunca-
tion). As indicated in section II usually truncation is used
in order to limit the resources in TCS filters but it has been
shown in the literature [15] that truncation do not offset the
advantages of a RNS implementation. Moreover, the RNS
representation is often used to design filters with error detec-
tion and correction capabilities [13], [14]). If truncation is
used, error detection techniques cannot be used. The results
are presented in table IV.

The resource savings obtained by using RNS are always
greater than 30% when the dynamic range of the input data
is 12 bits, while in case of 8 bits the advantage depends on
the number of taps. For the FIR1 there are no savings but a
small increment in the resources usage due to the overhead
of the conversion blocks but savings up to 20% are obtained
for FIR5 and FIR 3 experiments. The experimental results
shows that the presented techniques offer interesting advan-

canonical RNS saving
Exp. Name (#LUTs) (#LUTs) (%)

FIR1 788 804 -2
FIR2 1800 1460 18
FIR3 3632 2900 20
FIR4 6966 6356 8
FIR5 15203 12296 19
FIR6 1899 1252 34
FIR7 3338 2228 33
FIR8 6555 4308 34
FIR9 14043 9044 35
FIR10 29234 17545 40

Table 4. Comparison of RNS and TCS filters

tages for FIR filters characterized by high dynamic range
and high number of taps especially when full custom mul-
tipliers are not available in the target FPGA architecture or
when they must to be used for different purposes.

6. CONCLUSION

The optimization of Residue Number System (RNS) arith-
metic to better exploit some of the architectural characteris-
tic of the last generation FPGAs has been presented. Using
an approach based on ROM modular adders different op-
timization techniques for the basic modular operations and
for the basic blocks of RNS filters has been discussed. The
choice of 5-bit moduli allows to implement high speed, low
resource occupation RNS filters, as shown in the set of ex-
periments discussed in the paper.
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