This article has been accepted for inclusion in a future issue of this journal.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

A Class of SEC-DED-DAEC Codes Derived From
Orthogonal Latin Square Codes

Pedro Reviriego, Salvatore Pontarelli, Adrian Evans,
and Juan Antonio Maestro

Abstract— Radiation-induced soft errors are a major reliability
concern for memories. To ensure that memory contents are not corrupted,
single error correction double error detection (SEC-DED) codes are
commonly used, however, in advanced technology nodes, soft errors
frequently affect more than one memory bit. Since SEC-DED codes
cannot correct multiple errors, they are often combined with interleaving.
Interleaving, however, impacts memory design and performance and
cannot always be used in small memories. This limitation has spurred
interest in codes that can correct adjacent bit errors. In particular,
several SEC-DED double adjacent error correction (SEC-DED-DAEC)
codes have recently been proposed. Implementing DAEC has a cost as it
impacts the decoder complexity and delay. Another issue is that most of
the new SEC-DED-DAEC codes miscorrect some double nonadjacent bit
errors. In this brief, a new class of SEC-DED-DAEC codes is derived from
orthogonal latin squares codes. The new codes significantly reduce the
decoding complexity and delay. In addition, the codes do not miscorrect
any double nonadjacent bit errors. The main disadvantage of the new
codes is that they require a larger number of parity check bits. Therefore,
they can be useful when decoding delay or complexity is critical or
when miscorrection of double nonadjacent bit errors is not acceptable.
The proposed codes have been implemented in Hardware Description
Language and compared with some of the existing SEC-DED-DAEC
codes. The results confirm the reduction in decoder delay.

Index Terms—Double adjacent error correction (DAEC), error
correction codes, memory, orthogonal latin squares (OLS), single error
correction double error detection (SEC-DED).

I. INTRODUCTION

Radiation-induced soft errors are a major concern for memory
reliability [1]. To protect memories, error correction codes are
commonly used [2]. Traditionally, single error correction double error
detection (SEC-DED) codes have been used [3]. A SEC-DED code
has a minimum Hamming distance of four and is able to correct
single bit errors and detect double errors without miscorrection. This
is important to avoid silent data corruption. SEC-DED codes are
sufficient when errors affect only one bit, however, the percentage of
soft errors affecting more than a single bit is increasing as technology
scales [4]. For memories implemented in 40 nm and below, multiple
bit errors are a significant percentage of errors and thus SEC-DED
codes alone are no longer sufficient to protect memories. One option
is to combine SEC-DED codes with interleaving [5]. Interleaving,
places the bits that belong to the same logical word physically
apart. As the errors caused by a radiation particle hit are physically
close [6], this ensures that the errors affect at most one bit per logical
word. Interleaving has an impact on the memory design. The routing
is more complex and area and power consumption are increased.
In addition, interleaving cannot always be used in small memories

Manuscript received August 6, 2013; revised January 29, 2014; accepted
April 16, 2014. This work was supported in part by the Spanish Ministry
of Science and Education under Grant AYA2009-13300-C03 and in part by
the framework of COST ICT Action 1103 through the Manufacturable and
Dependable Multicore Architectures at Nanoscale.

P. Reviriego and J. A. Maestro are with the Universidad Antonio de Nebrija,
Madrid E-28040, Spain (e-mail: previrie@nebrija.es; jmaestro@nebrija.es).

S. Pontarelli is with the University of Rome “Tor Vergata,” Rome 00133,
Italy (e-mail: pontarelli@ing.uniroma2.it).

A. Evans is with Iroc Technologies, Grenoble 38000, France (e-mail:
adrian.evans @iroctech.com).

Digital Object Identifier 10.1109/TVLSI1.2014.2319291

Content is final as presented, with the exception of pagination.

Recomputed 2t check bits for bit d;

S

Maijority
circuit L

~

L Correction
Gate

decoded d; bit

Fig. 1. Tlustration of OS-MLD decoding for OLS codes.

or register files nor can be practically applied to content addressable
memories [7]. Another alternative is to use error correction codes
that can correct adjacent bits. In many cases, directly adjacent bits
account for over 90% of the observed multiple bit errors. Several
codes have been recently proposed to this end. For example, a code
that can correct double and triple adjacent errors for words of 16 bit
was presented in [8]. In [9], a technique to design SEC-DED double
adjacent error correction (SEC-DED-DAEC) codes was introduced.
The extension of SEC-DED-DAEC codes to also detect larger burst
errors has also been recently considered in [10]. One issue with those
SEC-DED-DAEC codes is that they can miscorrect some double
nonadjacent bit errors. The reduction of the miscorrection probability
has been considered in [9] and [11]. In [9], the algorithm tries
to minimize the number of 4 cycles. In [12], it was shown that
miscorrection can be avoided for the most common error patterns
and in some cases for all patterns at the cost of adding additional
parity check bits. Another issue with SEC-DED-DAEC codes is
that their decoding complexity and latency are larger than those of
SEC-DED codes. This limits their use when speed is a critical
factor. This issue was addressed in [13] where codes that can correct
adjacent errors and have simple and fast decoders were presented.
The main limitation for these codes is that they require a number
of parity check bits equal to the number of data bits. The use
of more advanced codes such as difference set and orthogonal
latin squares (OLS) codes to correct adjacent errors has also been
considered in [14] and [15]. Those codes are one-step majority
logic decodable (OS-MLD) and therefore, can be decoded with low
latency. They also support the correction of multiple nonadjacent bit
errors, a protection level that may be excessive in some memory
applications.

In this brief, a new class of SEC-DED-DAEC codes is
presented. The proposed codes are derived from OLS codes. They
require fewer parity check bits than double error correction (DEC)
OLS codes and are simpler to decode. Compared with existing
SEC-DED-DAEC codes, the new codes have two main advantages:
first, there are no miscorrections for double nonadjacent errors and
second, the decoding is much simpler and faster. The main drawback
for the proposed codes is that they require more parity check bits
than existing SEC-DED-DAEC codes. Therefore, the proposed codes
can be useful to protect memories in which decoding latency is
critical or miscorrections cannot be tolerated. The rest of this brief is
organized as follows. In Section II, OLS codes are briefly presented.
In Section III, the proposed SEC-DED-DAEC codes are derived and
their error correction capabilities are discussed. Section IV presents
an evaluation of the new codes focusing on decoding latency and

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

111100000000O0O0O0O0:1 000000O0O0O0O0O0O0O0O0O0

M 0000111100000O0O0O0:010000O0O0OO0OO0OO0OO0O0O0O0O0

000000OO0OO0O111100O00001000000O0OO0OO0OO0OO0OO0O

0000000000001 1110 001000000O00O00O00O00O0

1000100010001 0O0000001000O00O0O0O0O00O0O0

0100010001 00O0O1O0O0E00O0O0OO0O1100O0O0OO0OO0OO0OO0OO0OO

M; 00100010001 00O01O0000000100O0O0OO0O0O0O0O0
000100010001 00O0T15000000O0100O0O0O0O0CO0O0 I
10000100001 00O0OO0OT1000000001O0O0O0O0OO0OO0CO0 4m

010010000001 0O010O00000000O0OO0O10O0O0O0CO0O0

M; 0010000110000100000000000O01O0O0O0O0OO0

0001001001001000:i000000000O0O0O100O0O00

100000100001 0100:00000000O0O0O0CO0T1O0O00O0

M 0100000100101 0O00O0000000000O0O0O0O0OT1UO0O0

4 001010000100O0O0O0CT150 00000000O0O0O0O0O0TIO0

0001010010000O010:000000000O00O000O00O01

Fig. 2. Parity check matrix H for the OLS code with k = 16 and ¢t = 2.
TABLE I

circuit area. Finally, the conclusion and ideas for future work are
discussed in Section V.

II. OLS CODES

OLS codes were introduced decades ago to protect memories [16]
and have recently been proposed to protect caches [17] and intercon-
nects [18].

The block sizes for OLS codes are k = m? data bits and 2fm parity
bits. Where ¢ is the number of errors that the code can correct and
m is an integer. For memories, the word sizes are typically a power
of two and therefore m is commonly also power of two. The main
advantage of OLS codes is that their decoding is simple and fast.
This is because, as mentioned in the introduction, OLS codes can be
decoded using OS-MLD. In OS-MLD, each bit is decoded by simply
taking the majority value on the set of the recomputed parity check
equations (or syndrome bits) in which it participates [19]. This is
shown in Fig. 1 for a given data bit d;. The idea behind OS-MLD is
that when an error occurs in bit d;, the recomputed parity checks in
which it participates will take a value of one unless there are errors in
other bits. Therefore, a majority of ones in those recomputed checks
is an indication that the bit is in error and therefore needs to be
corrected. If the code is such that two bits share at most one parity
check, then 7 —1 errors on other bits will not affect the majority of the
2t vote and therefore, the error will be corrected. Only a few codes
have this property and can be decoded using OS-MLD [19]. This is
the case for difference set codes and for OLS codes, as mentioned
in the introduction.

More formally, the construction of OLS codes is such that:

1) each data bit participates in exactly 2¢ parity check bits;

2) each other data bit participates in at most one of those parity

check bits.

Therefore, for a number of errors ¢ or smaller, when one error
affects a given bit, the remaining ¢ — 1 errors can, in the worst case
affect — 1 check bits on which that bit participates. Therefore, still
a majority of + 4+ 1 will trigger the correction on the erroneous bit.
Conversely, when a given bit is correct, ¢ errors on other bits will not
cause miscorrection as a majority of ¢ + 1 is needed. As shown in
Fig. 1, the use of OS-MLD enables a simple and fast decoding that
is attractive to protect memories when decoding latency is critical.
Another characteristic of OLS codes is that they correct only errors on
the data bits. No correction is done for the parity bits. This is not an
issue as in memories, the goal is to recover the stored data correctly.

As mentioned in the introduction, the proposed codes are derived
from DEC OLS codes. These are block linear codes that are defined
by their parity generating G and parity check H matrixes [19].
The parity check matrix is used to detect errors by computing the

PARAMETERS OF SOME DEC OLS CODES

k n-k m
16 16 4
64 32 8

256 64 16

syndrome s that is obtained by multiplying the stored word by the
H matrix. The parity check matrix H for a DEC OLS code with
k = m? is constructed as follows:

M

M

M§ Iy
My

€y

where Iy, is the identity matrix of size 4m and M, My, M3, My
are matrices with size m x m2 derived from OLS of size m x m.
The weight or the number of ones, of all the columns, in the M;
matrices must be one. Therefore, the first k = m? columns in H
have a number of ones equal to 2¢ (four for DEC codes). In addition,
any pair of columns has at most a position with a one in common.
This as discussed before enables the use of OS-MLD for decoding.
As an example, the H matrix for a code with k = m? = 16 data
bits and 2¢tm = 16 parity bits that can correct double errors is shown
in Fig. 2. The parameters of some DEC OLS codes are summarized
in Table L.

IIT1. PROPOSED SEC-DED-DAEC CODES

The proposed codes are derived from DEC OLS codes. Taking
the parity check matrix in (1) as a starting point, the first step is to
remove the m parity check bits that correspond to one of the M;
matrices. As an example, consider removing the M| matrix from the
matrix in Fig. 2 as shown in Fig. 3. The data bits that participated in
each of the removed parity check equations will not share any parity
check in the reduced matrix. This is a direct consequence from the
property of OLS codes that any two data bits share (that is have a one
in the same row in the H matrix) at most one parity check bit. This
can be clearly observed in Fig. 2. In addition, those groups of m bits
are marked as g1, g2, g3, and g4 in Fig. 3. For example, the first four
data bits share the first parity check bit in the M| matrix and form
the first group g1. It can be observed that they do not share any other
parity check bits. Therefore, when M| is removed they do not share
any parity check bit. The same occurs for the other groups of bits
5-8 (g2), 9-12 (g3), and 13-16 (g4). In the reduced matrix, each data
bit participates in three parity checks. Therefore, if a majority vote
is used to decode the bits, single and double errors can be corrected.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

g1 28] 23 24
1000100010001 0O00O0:1 0O0O0O0O0OO0OO0ODO0O0OOO0
M 0100010001000O1O00i0100O0O0OO0OO0ODO0OO0OO0O0
2 00100010001 O00010:i001000O0000O0O0O0
000100010001 0001:0001000000°O00O0
10000100001 00001:0000100000©O00O0
M; 010010000001 00100000O01O00O0O0O0CO0 Lim
0010000110000100i00000O01000O0O0C0O0
0001001001001 000:0000O0O0O0100O00O00O0
100000100001 0100:00000000100°0
M 01000001001010O0O0:0000O0O000O01°00O0
4 00101000010000OO0O1:000000O0OO0OO0OO0OT1O
0001010010000010:00000O0O00O00O0O0°1
Fig. 3. Reduced parity check matrix H after the removal of M.
S185S9 S2S6S10
p7 Po D1 ps P4 Pt pi2 ps Pio Pe P2 P3
100001001 0000000100000O0O0OT1O0O0O0
d; corr; ds corrs 00100000001 000O00O00O010O01O0O0OO0OT1O0O0
0000100000001 000000010O01O0O0T10
= = 0000001001 0000100000O0O0OT1O00O0O0O0T1
10000001001 00000000O0O1000O0O0©O0T1
001000001000000O00O0CO0O1O001O0O0O0OT1O0
0100100000000010100000O00O010O00O0
0000001000001 001001000O0O01O0O0°0O0
decoded ds d2 1001000000001 0000000O0OO0OT1O0O0T10O00O0
. . . 0010000000000O0100100100O01O00O00O0
Fig. 4. Tllustration of the proposed decoder for data bits 1 and 2. 000010001001000000100000000 1
00000010001 001001000000O0OO0O0T10
Fig. 5. Reduced parity check matrix H after the removal of M| with the

However, double errors can also cause miscorrections on other bits.
Therefore, the modified matrix, when a majority vote is used, is only
effective in correcting single errors. However, let us consider that
instead of a majority vote, the logical AND of the three parity checks
is used. In Fig. 4, this is shown for the first two data bits where the s;
values correspond to bits of the syndrome vector obtained by multi-
plying the word by the H matrix. In this case, the code will obviously
not miscorrect when there are two errors. Single errors on data bits
will also be corrected. Double errors affecting data bits will also be
corrected as long as the data bits do not share any parity check bit.

The two modifications (matrix reduction and voting by unanimity)
can now be linked together by noting that errors that affect bits in
one group of bits that share a parity check bit in M| will now be
corrected. For example, an adjacent error in bits 1 and 2 will cause
the recomputed parity checks 1, 2, 5, 6, 9, and 10 to give a value of
one. The ones on parity checks 1, 5, and 9 will trigger a correction
on bit 1 while the ones on parity checks 2, 6, and 10 will trigger a
correction on bit 2. This is clearly observed in Fig. 4. In this case, the
recomputed parity checks are denoted as s; to make clear that they are
in fact bits from the syndrome. However, some double adjacent errors
may affect bits on different groups. For example, an error on bits
8 and 9 affects a bit in gp and another in g3. These bits share parity
check bit 7 and therefore, will not be corrected as that recomputed
parity bit will take a value of zero in the syndrome as it has two bits
in error. This effect can be avoided by carefully placing the bits in the
memory. For example, the bits within each group can be reordered
to ensure that the ones at the borders does not share any parity check
bit with the adjacent bit on the other group. Another issue that can
occur is that a double adjacent error affects two parity bits and the
error is confused with a double nonadjacent error. For example, an
error on parity check bits 4 and 5 produces the same syndrome as an
error that affects data bit 16 and parity check bit 11. This can lead
to silent data corruption leaving an error on data bit 16 undetected.
However, this issue can also be solved by carefully placing the bits
into the memory.

proposed bit placement.

S1 S2 S3

tee 7

Non zero even
number of ones

corrq
corr v
cofrry
Uncorrectable

error

Fig. 6. Detection of double uncorrectable errors in the proposed scheme.

The proposed bit placement is as follows: 1) ensure that the bits at
the borders of the groups do not share any parity check bits and
2) interleave the parity check bits with the data bits so that no
double adjacent error affects two parity bits. An example of this
bit placement for the code with k = 16 is shown in Fig. 5. The
parity bits are marked in the figure and obviously, they can only be
placed such that the adjacent columns do not participate in the parity
bit. With this bit placement, all double adjacent errors affect at least
a data bit and that data bit is corrected.

In addition, for nonadjacent errors that affect two bits, if any bit
is corrected it means that the error is correctable. When the error
affects two data bits, either they are both corrected or there is no
correction. Obviously, when the error affects a data bit and a parity
bit, if the data bit is corrected the error was correctable. This enables
a simple method to detect uncorrectable errors. The proposed scheme
to detect the uncorrectable errors is shown in Fig. 6. It is based on
detecting a nonzero even number of ones in the syndrome that can
only be caused by a multiple bit error and checking if any correction
has been made.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE II
PARAMETERS OF THE PROPOSED SEC-DED-DAEC CODES

k n-k m
16 12 4
64 24 8

256 48 16

The proposed scheme can be summarized as follows:

1) reduce the H matrix of the DEC OLS code by eliminating My;
2) place the bits in the groups of m bits g1, g2, ..., gm such that
the bits at the borders of the groups do not share any parity
check;

interleave the parity bits with the data bits such that two
adjacent bits never participate in the same parity bit;

instead of majority voting, decode based on unanimity
(three-way AND) to correct errors;

implement the circuit of Fig. 6 to detect uncorrectable errors.

3)
4)

5)

This scheme can correct all double adjacent errors that affect data
bits and detect all noncorrectable double errors. Therefore, the derived
codes are SEC-DED-DAEC with no miscorrection. In addition, some
double nonadjacent errors are also corrected and the fraction of these
errors that can be corrected grows with the block size. The parameters
of the derived codes for the block sizes that are commonly of interest
for memory protection are summarized on Table II. It can be observed
that the number of required parity check bits is significantly higher
than traditional SEC-DED-DAEC codes [9] but this is the price to pay
for faster decoding and the absence of miscorrections. Miscorrections
can also be avoided with a lower number of parity checks bits using
the scheme presented in [12]. For example, for k = 64 a SEC-DED-
DAEC with no miscorrection required 12 bit compared with the 24 of
the proposed codes. In that case, the main benefit of the new codes is
the simple and fast decoding. In the next section, the area and delay of
the decoder for the proposed codes are compared with that of existing
SEC-DED-DAEC codes to put their performance in perspective.

IV. EVALUATION

For the parameters shown in Table II, the proposed SEC-DED-
DAEC extended codes have been implemented in MATLAB where
their error correction capabilities were validated for single and double
adjacent errors. As the number of combinations of single and double
adjacent errors is small (2n — 1), these were tested exhaustively. For
the nonadjacent double errors, 100000 combinations were randomly
generated and tested to ensure that the errors were corrected or
detected as uncorrectable. The results confirm the theoretical analysis
in that the codes are SEC-DED-DAEC with no miscorrection.

The encoders and decoders have also been implemented in
Hardware Description Language (HDL) and synthesized for the
45-nm OSU FreePDK Standard Cell library [20] using Synopsys
Design Compiler. The synthesizer is configured to optimize the
delay. Therefore, the results provide the lowest delay that can be
achieved. The reported circuit area could be reduced at the expense
of increasing the delay. The area and delay results only for the
encoders and decoders are presented in Tables III and IV. As
expected, the decoders for the proposed codes are simpler and faster
than those of existing SEC-DED-DAEC codes. In particular, the
SEC-DED-DAEC codes presented in [12] for kK = 16 and for k = 64
that avoid miscorrections for double nonadjacent errors that are
separated up to a distance of five are used for comparison. The results
show that the decoder area is less than one half of that required by
the codes in [12] and the delay is also greatly reduced (45% and 50%
for k = 16 and k = 64, respectively). The reduction in the encoder
delay is also significant: 12% and 24%, respectively. The results

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III
AREA ESTIMATES (IN #m?)

Proposed codes SEC-DED-DAEC in [12]
k n-k Encoder Decoder n-k Encoder Decoder
16 12 158 457 7 190 1,098
64 24 831 1,976 9 805 4,369
256 48 3,687 6,927 - - -
TABLE IV
DELAY ESTIMATES (IN NANOSECONDS)
Proposed codes SEC-DED-DAEC in [12]
k n-k Encoder Decoder n-k Encoder Decoder
16 12 0.22 0.25 7 0.25 0.47
64 24 0.25 0.34 9 0.33 0.69
256 48 0.28 0.45 - - -

confirm that the proposed codes are significantly faster than existing
SEC-DED-DAEC alternatives making them attractive for high-speed
memories like caches [17]. They also avoid miscorrections for double
nonadjacent errors. The price to pay is that the number of parity
check bits needed (n — k) is significantly larger than for existing
SEC-DED-DAEC codes.

V. CONCLUSION

In this brief, a new class of SEC-DED-DAEC codes has been
presented. The codes are derived from DEC OLS codes and can
be decoded with low latency. Another interesting feature is that the
codes do not experience miscorrections when double nonadjacent
error occurs. This is interesting to minimize silent data corrup-
tion. The codes can also correct some nonadjacent double errors.
Compared with existing SEC-DED-DAEC codes, they require a larger
number of parity check bits, therefore, they are attractive when low
latency decoding is a required. The codes have been implemented
in HDL and the resulting implementations compared with existing
SEC-DED-DAEC codes to put the reductions in decoding latency in
perspective.

The ideas used to derive the proposed SEC-DED-DAEC can also
be used to derive burst error correction codes from OLS codes that
can correct multiple errors. The key observation is that the structure
of OLS codes is such that the data bits can be divided in groups of
m bits that do not share any parity check. Therefore, any error
affecting up to 27 —1 bits in one of these groups can be corrected. This
can be exploited by carefully placing the data and parity check bits so
that, in the best case, up to 2¢ — 1 adjacent bit errors can be corrected.
The development of burst error correction codes is an interesting
avenue to continue and extend the work presented in this brief.

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced computer systems,” IEEE Des.
Test. Comput., vol. 22, no. 3, pp. 258-266, May/Jun. 2005.

C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124-134, Mar. 1984.

M. Y. Hsiao, “A class of optimal minimum odd-weight-column
SEC-DED codes,” IBM J. Res. Develop., vol. 14, no. 4, pp. 395-301,
Jul. 1970.

E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error in SRAMs from a 250 nm to
a 22 nm design rule,” IEEE Trans. Electron Devices, vol. 57, no. 7,
pp. 1527-1538, Jul. 2010.

P. Reviriego, J. A. Maestro, S. Baeg, S. Wen, and R. Wong, “Protection
of memories suffering MCUs through the selection of the optimal inter-
leaving distance,” IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp. 2124-2128,
Aug. 2010.

[2]

[3]

[4]

[5]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[6]

[7]

[8]

[9

—

[10]

(11]

[12]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

S. Satoh, Y. Tosaka, and S. A. Wender, “Geometric effect of multiple-bit
soft errors induced by cosmic ray neutrons on DRAM’S,” IEEE Electron
Device Lett., vol. 21, no. 6, pp. 310-312, Jun. 2000.

S. Baeg, S. Wen, and R. Wong, “Minimizing soft errors in TCAM
devices: A probabilistic approach to determining scrubbing intervals,”
IEEE Trans. Circuits Syst. 1I, Exp. Briefs, vol. 57, no. 4, pp. 814-822,
Apr. 2010.

X. She, N. Li, and D. W. Jensen, “SEU tolerant memory using error
correction code,” IEEE Trans. Nucl. Sci., vol. 59, no. 1, pp. 205-210,
Feb. 2012.

A. Dutta and N. A. Touba, “Multiple bit upset tolerant memory using a
selective cycle avoidance based SEC-DED-DAEC code,” in Proc. 25th
IEEE VLSI Test Symp., May 2007, pp. 349-354.

A. Neale and M. Sachdev, “A new SEC-DED error correction code
subclass for adjacent MBU tolerance in embedded memory,” IEEE
Trans. Device Mater. Rel., vol. 13, no. 1, pp. 223-230, Mar. 2013.

Z. Ming, X. L. Yi, and L. H. Wei, “New SEC-DED-DAEC codes for
multiple bit upsets mitigation in memory,” in Proc. IEEE/IFIP 19th Int.
Conf. VLSI-SoC, Oct. 2011, pp. 254-259.

A. Dutta, “Low cost adjacent double error correcting code with complete
elimination of miscorrection within a dispersion window for multiple bit
upset tolerant memory,” in Proc. IEEE/IFIP 20th Int. Conf. VLSI SoC,
2012, pp. 287-290.

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

P. Reviriego, S. Pontarelli, J. A. Maestro, and M. Ottavi, “Low-cost sin-
gle error correction multiple adjacent error correction codes,” Electron.
Lett., vol. 48, no. 23, pp. 1470-1472, Nov. 2012.

P. Reviriego, M. Flanagan, S. Liu, and J. A. Maestro, “Multiple
cell upset correction in memories using difference set codes,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2592-2599,
Nov. 2012.

R. Datta and N. A. Touba, “Generating burst-error correcting codes from
orthogonal latin square codes—A graph theoretic approach,” in Proc.
IEEE Int. Symp. Defect and Fault Tolerance in VLSI and Nanotechnol.
Syst., Oct. 2011, pp. 367-373.

M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal Latin square
codes,” IBM J. Res. Develop., vol. 14, no. 4, pp. 390-394, Jul. 1970.
A. R. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, and S.-L. Lu,
“Adaptive cache design to enable reliable low-voltage operation,” IEEE
Trans. Comput., vol. 60, no. 1, pp. 50-63, Jan. 2011.

S. E. Lee, Y. S. Yang, G. S. Choi, W. Wu, and R. Iyer, “Low-power,
resilient interconnection with orthogonal latin squares,” IEEE Des. Test
Comput., vol. 28, no. 2, pp. 30-39, Mar./Apr. 2011.

S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2004.

J. E. Stine et al., “FreePDK: An open-source variation-aware design kit,”
in Proc. IEEE Int. Conf. MSE, Jun. 2007, pp. 173-174.

