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Abstract— Radiation-induced soft errors are a major reliability
concern for memories. To ensure that memory contents are not corrupted,
single error correction double error detection (SEC-DED) codes are
commonly used, however, in advanced technology nodes, soft errors
frequently affect more than one memory bit. Since SEC-DED codes
cannot correct multiple errors, they are often combined with interleaving.
Interleaving, however, impacts memory design and performance and
cannot always be used in small memories. This limitation has spurred
interest in codes that can correct adjacent bit errors. In particular,
several SEC-DED double adjacent error correction (SEC-DED-DAEC)
codes have recently been proposed. Implementing DAEC has a cost as it
impacts the decoder complexity and delay. Another issue is that most of
the new SEC-DED-DAEC codes miscorrect some double nonadjacent bit
errors. In this brief, a new class of SEC-DED-DAEC codes is derived from
orthogonal latin squares codes. The new codes significantly reduce the
decoding complexity and delay. In addition, the codes do not miscorrect
any double nonadjacent bit errors. The main disadvantage of the new
codes is that they require a larger number of parity check bits. Therefore,
they can be useful when decoding delay or complexity is critical or
when miscorrection of double nonadjacent bit errors is not acceptable.
The proposed codes have been implemented in Hardware Description
Language and compared with some of the existing SEC-DED-DAEC
codes. The results confirm the reduction in decoder delay.

Index Terms—Double adjacent error correction (DAEC), error
correction codes, memory, orthogonal latin squares (OLS), single error
correction double error detection (SEC-DED).

I. INTRODUCTION

Radiation-induced soft errors are a major concern for memory
reliability [1]. To protect memories, error correction codes are
commonly used [2]. Traditionally, single error correction double error
detection (SEC-DED) codes have been used [3]. A SEC-DED code
has a minimum Hamming distance of four and is able to correct
single bit errors and detect double errors without miscorrection. This
is important to avoid silent data corruption. SEC-DED codes are
sufficient when errors affect only one bit, however, the percentage of
soft errors affecting more than a single bit is increasing as technology
scales [4]. For memories implemented in 40 nm and below, multiple
bit errors are a significant percentage of errors and thus SEC-DED
codes alone are no longer sufficient to protect memories. One option
is to combine SEC-DED codes with interleaving [5]. Interleaving,
places the bits that belong to the same logical word physically
apart. As the errors caused by a radiation particle hit are physically
close [6], this ensures that the errors affect at most one bit per logical
word. Interleaving has an impact on the memory design. The routing
is more complex and area and power consumption are increased.
In addition, interleaving cannot always be used in small memories
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Fig. 1. Tlustration of OS-MLD decoding for OLS codes.

or register files nor can be practically applied to content addressable
memories [7]. Another alternative is to use error correction codes
that can correct adjacent bits. In many cases, directly adjacent bits
account for over 90% of the observed multiple bit errors. Several
codes have been recently proposed to this end. For example, a code
that can correct double and triple adjacent errors for words of 16 bit
was presented in [8]. In [9], a technique to design SEC-DED double
adjacent error correction (SEC-DED-DAEC) codes was introduced.
The extension of SEC-DED-DAEC codes to also detect larger burst
errors has also been recently considered in [10]. One issue with those
SEC-DED-DAEC codes is that they can miscorrect some double
nonadjacent bit errors. The reduction of the miscorrection probability
has been considered in [9] and [11]. In [9], the algorithm tries
to minimize the number of 4 cycles. In [12], it was shown that
miscorrection can be avoided for the most common error patterns
and in some cases for all patterns at the cost of adding additional
parity check bits. Another issue with SEC-DED-DAEC codes is
that their decoding complexity and latency are larger than those of
SEC-DED codes. This limits their use when speed is a critical
factor. This issue was addressed in [13] where codes that can correct
adjacent errors and have simple and fast decoders were presented.
The main limitation for these codes is that they require a number
of parity check bits equal to the number of data bits. The use
of more advanced codes such as difference set and orthogonal
latin squares (OLS) codes to correct adjacent errors has also been
considered in [14] and [15]. Those codes are one-step majority
logic decodable (OS-MLD) and therefore, can be decoded with low
latency. They also support the correction of multiple nonadjacent bit
errors, a protection level that may be excessive in some memory
applications.

In this brief, a new class of SEC-DED-DAEC codes is
presented. The proposed codes are derived from OLS codes. They
require fewer parity check bits than double error correction (DEC)
OLS codes and are simpler to decode. Compared with existing
SEC-DED-DAEC codes, the new codes have two main advantages:
first, there are no miscorrections for double nonadjacent errors and
second, the decoding is much simpler and faster. The main drawback
for the proposed codes is that they require more parity check bits
than existing SEC-DED-DAEC codes. Therefore, the proposed codes
can be useful to protect memories in which decoding latency is
critical or miscorrections cannot be tolerated. The rest of this brief is
organized as follows. In Section II, OLS codes are briefly presented.
In Section III, the proposed SEC-DED-DAEC codes are derived and
their error correction capabilities are discussed. Section IV presents
an evaluation of the new codes focusing on decoding latency and
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Fig. 2. Parity check matrix H for the OLS code with k = 16 and ¢t = 2.
TABLE I

circuit area. Finally, the conclusion and ideas for future work are
discussed in Section V.

II. OLS CODES

OLS codes were introduced decades ago to protect memories [16]
and have recently been proposed to protect caches [17] and intercon-
nects [18].

The block sizes for OLS codes are k = m? data bits and 2fm parity
bits. Where ¢ is the number of errors that the code can correct and
m is an integer. For memories, the word sizes are typically a power
of two and therefore m is commonly also power of two. The main
advantage of OLS codes is that their decoding is simple and fast.
This is because, as mentioned in the introduction, OLS codes can be
decoded using OS-MLD. In OS-MLD, each bit is decoded by simply
taking the majority value on the set of the recomputed parity check
equations (or syndrome bits) in which it participates [19]. This is
shown in Fig. 1 for a given data bit d;. The idea behind OS-MLD is
that when an error occurs in bit d;, the recomputed parity checks in
which it participates will take a value of one unless there are errors in
other bits. Therefore, a majority of ones in those recomputed checks
is an indication that the bit is in error and therefore needs to be
corrected. If the code is such that two bits share at most one parity
check, then 7 —1 errors on other bits will not affect the majority of the
2t vote and therefore, the error will be corrected. Only a few codes
have this property and can be decoded using OS-MLD [19]. This is
the case for difference set codes and for OLS codes, as mentioned
in the introduction.

More formally, the construction of OLS codes is such that:

1) each data bit participates in exactly 2¢ parity check bits;

2) each other data bit participates in at most one of those parity

check bits.

Therefore, for a number of errors ¢ or smaller, when one error
affects a given bit, the remaining ¢ — 1 errors can, in the worst case
affect  — 1 check bits on which that bit participates. Therefore, still
a majority of + 4+ 1 will trigger the correction on the erroneous bit.
Conversely, when a given bit is correct, ¢ errors on other bits will not
cause miscorrection as a majority of ¢ + 1 is needed. As shown in
Fig. 1, the use of OS-MLD enables a simple and fast decoding that
is attractive to protect memories when decoding latency is critical.
Another characteristic of OLS codes is that they correct only errors on
the data bits. No correction is done for the parity bits. This is not an
issue as in memories, the goal is to recover the stored data correctly.

As mentioned in the introduction, the proposed codes are derived
from DEC OLS codes. These are block linear codes that are defined
by their parity generating G and parity check H matrixes [19].
The parity check matrix is used to detect errors by computing the

PARAMETERS OF SOME DEC OLS CODES

k n-k m
16 16 4
64 32 8

256 64 16

syndrome s that is obtained by multiplying the stored word by the
H matrix. The parity check matrix H for a DEC OLS code with
k = m? is constructed as follows:

M

M

M§ Iy
My

€y

where Iy, is the identity matrix of size 4m and M, My, M3, My
are matrices with size m x m2 derived from OLS of size m x m.
The weight or the number of ones, of all the columns, in the M;
matrices must be one. Therefore, the first k = m? columns in H
have a number of ones equal to 2¢ (four for DEC codes). In addition,
any pair of columns has at most a position with a one in common.
This as discussed before enables the use of OS-MLD for decoding.
As an example, the H matrix for a code with k = m? = 16 data
bits and 2¢tm = 16 parity bits that can correct double errors is shown
in Fig. 2. The parameters of some DEC OLS codes are summarized
in Table L.

IIT1. PROPOSED SEC-DED-DAEC CODES

The proposed codes are derived from DEC OLS codes. Taking
the parity check matrix in (1) as a starting point, the first step is to
remove the m parity check bits that correspond to one of the M;
matrices. As an example, consider removing the M| matrix from the
matrix in Fig. 2 as shown in Fig. 3. The data bits that participated in
each of the removed parity check equations will not share any parity
check in the reduced matrix. This is a direct consequence from the
property of OLS codes that any two data bits share (that is have a one
in the same row in the H matrix) at most one parity check bit. This
can be clearly observed in Fig. 2. In addition, those groups of m bits
are marked as g1, g2, g3, and g4 in Fig. 3. For example, the first four
data bits share the first parity check bit in the M| matrix and form
the first group g1. It can be observed that they do not share any other
parity check bits. Therefore, when M| is removed they do not share
any parity check bit. The same occurs for the other groups of bits
5-8 (g2), 9-12 (g3), and 13-16 (g4). In the reduced matrix, each data
bit participates in three parity checks. Therefore, if a majority vote
is used to decode the bits, single and double errors can be corrected.
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Fig. 5. Reduced parity check matrix H after the removal of M| with the

However, double errors can also cause miscorrections on other bits.
Therefore, the modified matrix, when a majority vote is used, is only
effective in correcting single errors. However, let us consider that
instead of a majority vote, the logical AND of the three parity checks
is used. In Fig. 4, this is shown for the first two data bits where the s;
values correspond to bits of the syndrome vector obtained by multi-
plying the word by the H matrix. In this case, the code will obviously
not miscorrect when there are two errors. Single errors on data bits
will also be corrected. Double errors affecting data bits will also be
corrected as long as the data bits do not share any parity check bit.

The two modifications (matrix reduction and voting by unanimity)
can now be linked together by noting that errors that affect bits in
one group of bits that share a parity check bit in M| will now be
corrected. For example, an adjacent error in bits 1 and 2 will cause
the recomputed parity checks 1, 2, 5, 6, 9, and 10 to give a value of
one. The ones on parity checks 1, 5, and 9 will trigger a correction
on bit 1 while the ones on parity checks 2, 6, and 10 will trigger a
correction on bit 2. This is clearly observed in Fig. 4. In this case, the
recomputed parity checks are denoted as s; to make clear that they are
in fact bits from the syndrome. However, some double adjacent errors
may affect bits on different groups. For example, an error on bits
8 and 9 affects a bit in gp and another in g3. These bits share parity
check bit 7 and therefore, will not be corrected as that recomputed
parity bit will take a value of zero in the syndrome as it has two bits
in error. This effect can be avoided by carefully placing the bits in the
memory. For example, the bits within each group can be reordered
to ensure that the ones at the borders does not share any parity check
bit with the adjacent bit on the other group. Another issue that can
occur is that a double adjacent error affects two parity bits and the
error is confused with a double nonadjacent error. For example, an
error on parity check bits 4 and 5 produces the same syndrome as an
error that affects data bit 16 and parity check bit 11. This can lead
to silent data corruption leaving an error on data bit 16 undetected.
However, this issue can also be solved by carefully placing the bits
into the memory.

proposed bit placement.
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Fig. 6. Detection of double uncorrectable errors in the proposed scheme.

The proposed bit placement is as follows: 1) ensure that the bits at
the borders of the groups do not share any parity check bits and
2) interleave the parity check bits with the data bits so that no
double adjacent error affects two parity bits. An example of this
bit placement for the code with k = 16 is shown in Fig. 5. The
parity bits are marked in the figure and obviously, they can only be
placed such that the adjacent columns do not participate in the parity
bit. With this bit placement, all double adjacent errors affect at least
a data bit and that data bit is corrected.

In addition, for nonadjacent errors that affect two bits, if any bit
is corrected it means that the error is correctable. When the error
affects two data bits, either they are both corrected or there is no
correction. Obviously, when the error affects a data bit and a parity
bit, if the data bit is corrected the error was correctable. This enables
a simple method to detect uncorrectable errors. The proposed scheme
to detect the uncorrectable errors is shown in Fig. 6. It is based on
detecting a nonzero even number of ones in the syndrome that can
only be caused by a multiple bit error and checking if any correction
has been made.
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TABLE II
PARAMETERS OF THE PROPOSED SEC-DED-DAEC CODES

k n-k m
16 12 4
64 24 8

256 48 16

The proposed scheme can be summarized as follows:

1) reduce the H matrix of the DEC OLS code by eliminating My;
2) place the bits in the groups of m bits g1, g2, ..., gm such that
the bits at the borders of the groups do not share any parity
check;

interleave the parity bits with the data bits such that two
adjacent bits never participate in the same parity bit;

instead of majority voting, decode based on unanimity
(three-way AND) to correct errors;

implement the circuit of Fig. 6 to detect uncorrectable errors.

3)
4)

5)

This scheme can correct all double adjacent errors that affect data
bits and detect all noncorrectable double errors. Therefore, the derived
codes are SEC-DED-DAEC with no miscorrection. In addition, some
double nonadjacent errors are also corrected and the fraction of these
errors that can be corrected grows with the block size. The parameters
of the derived codes for the block sizes that are commonly of interest
for memory protection are summarized on Table II. It can be observed
that the number of required parity check bits is significantly higher
than traditional SEC-DED-DAEC codes [9] but this is the price to pay
for faster decoding and the absence of miscorrections. Miscorrections
can also be avoided with a lower number of parity checks bits using
the scheme presented in [12]. For example, for k = 64 a SEC-DED-
DAEC with no miscorrection required 12 bit compared with the 24 of
the proposed codes. In that case, the main benefit of the new codes is
the simple and fast decoding. In the next section, the area and delay of
the decoder for the proposed codes are compared with that of existing
SEC-DED-DAEC codes to put their performance in perspective.

IV. EVALUATION

For the parameters shown in Table II, the proposed SEC-DED-
DAEC extended codes have been implemented in MATLAB where
their error correction capabilities were validated for single and double
adjacent errors. As the number of combinations of single and double
adjacent errors is small (2n — 1), these were tested exhaustively. For
the nonadjacent double errors, 100000 combinations were randomly
generated and tested to ensure that the errors were corrected or
detected as uncorrectable. The results confirm the theoretical analysis
in that the codes are SEC-DED-DAEC with no miscorrection.

The encoders and decoders have also been implemented in
Hardware Description Language (HDL) and synthesized for the
45-nm OSU FreePDK Standard Cell library [20] using Synopsys
Design Compiler. The synthesizer is configured to optimize the
delay. Therefore, the results provide the lowest delay that can be
achieved. The reported circuit area could be reduced at the expense
of increasing the delay. The area and delay results only for the
encoders and decoders are presented in Tables III and IV. As
expected, the decoders for the proposed codes are simpler and faster
than those of existing SEC-DED-DAEC codes. In particular, the
SEC-DED-DAEC codes presented in [12] for kK = 16 and for k = 64
that avoid miscorrections for double nonadjacent errors that are
separated up to a distance of five are used for comparison. The results
show that the decoder area is less than one half of that required by
the codes in [12] and the delay is also greatly reduced (45% and 50%
for k = 16 and k = 64, respectively). The reduction in the encoder
delay is also significant: 12% and 24%, respectively. The results
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TABLE III
AREA ESTIMATES (IN #m?)

Proposed codes SEC-DED-DAEC in [12]
k n-k Encoder Decoder n-k Encoder Decoder
16 12 158 457 7 190 1,098
64 24 831 1,976 9 805 4,369
256 48 3,687 6,927 - - -
TABLE IV
DELAY ESTIMATES (IN NANOSECONDS)
Proposed codes SEC-DED-DAEC in [12]
k n-k Encoder Decoder n-k Encoder Decoder
16 12 0.22 0.25 7 0.25 0.47
64 24 0.25 0.34 9 0.33 0.69
256 48 0.28 0.45 - - -

confirm that the proposed codes are significantly faster than existing
SEC-DED-DAEC alternatives making them attractive for high-speed
memories like caches [17]. They also avoid miscorrections for double
nonadjacent errors. The price to pay is that the number of parity
check bits needed (n — k) is significantly larger than for existing
SEC-DED-DAEC codes.

V. CONCLUSION

In this brief, a new class of SEC-DED-DAEC codes has been
presented. The codes are derived from DEC OLS codes and can
be decoded with low latency. Another interesting feature is that the
codes do not experience miscorrections when double nonadjacent
error occurs. This is interesting to minimize silent data corrup-
tion. The codes can also correct some nonadjacent double errors.
Compared with existing SEC-DED-DAEC codes, they require a larger
number of parity check bits, therefore, they are attractive when low
latency decoding is a required. The codes have been implemented
in HDL and the resulting implementations compared with existing
SEC-DED-DAEC codes to put the reductions in decoding latency in
perspective.

The ideas used to derive the proposed SEC-DED-DAEC can also
be used to derive burst error correction codes from OLS codes that
can correct multiple errors. The key observation is that the structure
of OLS codes is such that the data bits can be divided in groups of
m bits that do not share any parity check. Therefore, any error
affecting up to 27 —1 bits in one of these groups can be corrected. This
can be exploited by carefully placing the data and parity check bits so
that, in the best case, up to 2¢ — 1 adjacent bit errors can be corrected.
The development of burst error correction codes is an interesting
avenue to continue and extend the work presented in this brief.
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