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Abstract—Error correction codes (ECCs) are commonly used to
protect memories from errors. As multibit errors become more frequent,
single error correction codes are not enough and more advanced ECCs
are needed. The use of advanced ECCs in memories is, however, limited
by their decoding complexity. In this context, one-step majority logic
decodable (OS-MLD) codes are an interesting option as the decoding
is simple and can be implemented with low delay. Orthogonal Latin
squares (OLS) codes are OS-MLD and have been recently considered to
protect caches and memories. The main advantage of OLS codes is that
they provide a wide range of choices for the block size and the error
correction capabilities. In this brief, a method to extend OLS codes is
presented. The proposed method enables the extension of the data block
size that can be protected with a given number of parity bits thus reducing
the overhead. The extended codes are also OS-MLD and have a similar
decoding complexity to that of the original OLS codes. The proposed
codes have been implemented to evaluate the circuit area and delay
needed for different block sizes.

Index Terms— Error correction codes (ECCs), Latin squares, majority
logic decoding, memory.

I. INTRODUCTION

To mitigate errors, error correction codes (ECCs) are commonly
used in memories [1]. Because of their simplicity, single error
correction codes that can correct one bit per word are traditionally
used [2]. Other codes that can also correct double adjacent errors [3]
or double errors in general have also been studied [4]. Codes that
can correct more errors have a larger impact on delay and power that
can limit their applicability to memory designs [5]. One alternative
to minimize those impacts is to use codes that are one-step majority
logic decodable (OS-MLD). OS-MLD codes can be decoded with
low latency and are, therefore, attractive to protect memories [6].
Several types of OS-MLD codes have been proposed for memory
protection. One example is a type of Euclidean geometry (EG)
codes studied in [7] and [8]. The use of difference set (DS) codes
has also been recently analyzed in [9] and [10]. Both EG and DS
codes provide a limited number of block sizes and error correction
capabilities. For example, for double error correction (DEC), only
very small data block sizes (smaller than 16 bits) can be implemented.
In addition, the error correction capability for a block size is fixed and
cannot be adapted to the error rate. Another type of code that is OS-
MLD is orthogonal Latin squares (OLS) code [11]. OLS codes can
be implemented for a wide range of block sizes and error correction
capabilities. The error correction capability for a given data block
size can also be easily adapted by simply adding or removing some
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Fig. 1. Tlustration of OS-MLD decoding for OLS codes.

parity bits. This flexibility and the simple and fast decoding are
the main advantages of OLS codes. However, OLS codes typically
require more parity bits than other codes to correct the same number
of errors. In some applications, this disadvantage is offset by their
modularity and the simple and low delay decoding implementation
(as OLS codes are OS-MLD). For example, OLS codes have been
recently considered to protect memories [12], caches [13], and
interconnections [14].

In this brief, a method to extend OLS codes such that larger
data blocks can be protected with the same number of parity
bits is presented. This makes the extended codes more cost effec-
tive. The modification does not affect the decoding that can be
performed using OS-MLD. The decoders for different block sizes
have been implemented in Hardware Description Language (HDL)
and synthesized to estimate the required area and delay. The results
show that the complexity and delay are similar to that of traditional
OLS codes.

The rest of this brief is organized as follows. Section II provides an
overview of OLS codes summarizing some of their properties that are
used in the rest of this paper. Then, the proposed method to extend
OLS codes is presented in Section III, detailing the parameters of
the extended codes for different block sizes. Section IV evaluates the
complexity of the decoders for the extended codes in terms of circuit
area and delay. Finally, the conclusions are presented in Section V.

II. OLS CODES

A Latin square of size m is an m x m matrix that has permutations
of the digits O, 1, ..., and m — 1 in both its rows and columns [15].
Two Latin squares are said to be orthogonal if when they are
superimposed every ordered pair of elements appears only once. OLS
codes are derived from OLS [11]. The block sizes for OLS codes are
k = m? data bits and 2 m parity bits, where ¢ is the number of
errors that the code can correct and m is an integer. For a given pair
of values of ¢ and m, the corresponding OLS code exists only if there
are at least 2t OLS of size m.

As mentioned in Section I, OLS codes can be decoded using
OS-MLD. OS-MLD is a simple procedure in which each bit is
decoded by simply taking the majority value of the set of the
recomputed parity check equations, in which it participates [6]. This
is shown in Fig. 1 for a given data bit d;. The reasoning behind
OS-MLD is that when an error occurs in bit d;, the recomputed parity
checks in which it participates will take a value of one. Therefore,
a majority of ones in those recomputed checks is an indication that
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Fig. 2. Parity check matrix H for the OLS code with k = 16 and ¢ = 2.

the bit is in error and therefore needs to be corrected. However, it
may also occur that errors in other bits different from d; provoke a
majority of ones that would cause miscorrection. For a few codes,
their properties ensure that this miscorrection cannot occur, and
therefore OS-MLD can be used. This is the case for some EG codes,
DS codes, and for OLS codes as mentioned in Section I.

In particular, OLS are by construction such that:

1) each data bit participates in exactly 2¢ parity check bits;
2) each other data bit participates in at most one of those parity
check bits.

This enables the use of OS-MLD as for a number of errors ¢ or
smaller, when one error affects a given bit, the remaining ¢ — 1
errors can, in the worst case affect + — 1 check bits. Therefore, still
a majority of r + 1 triggers the correction of an erroneous bit. In a
similar manner, when a given bit is correct, ¢ errors on other bits will
not cause misscorrection as a majority of # + 1 is needed. As shown
in Fig. 1, the use of OS-MLD enables a simple and fast decoding
that is interesting for high-speed memories.

As mentioned before, the parity check matrix H for OLS codes is
constructed from the OLS. As an example, the matrix for a code with
k = m? = 16 data bits and 2 rm = 16 parity bits that can correct
double errors is shown in Fig. 2. As explained before, the decoding
starts by recomputing the parity checks. The result is the syndrome
and a value of one in a given parity check (rows of H) means that
an error has been detected in that parity check. A given data bit
participates in the parity checks that have a one in the column that
corresponds to that bit. For example, the first column that corresponds
to the first data bit has ones in positions 1, 5, 9, and 13. For OLS
codes, as described before, the decoding is done by taking a majority
vote of the syndrome bits in which the bit participates (1, 5, 9, and
13 in our example). If the majority is one, then the data bit is in
error and is corrected by inverting the bit. In the example of Fig. 2,
all the data bits (first 16 columns) participate in exactly four parity
bits (2¢) and each pair of columns share at most one position with a
value of one.

For an arbitrary value of k = m?, the H matrix for a DEC OLS
code is constructed as follows:

M
M
M3
My

H = I4m (€]

where 14y, is the identity matrix of size 4m and M1, M>, M3, and My
are the matrices of size m x m? derived from OLS of size m x m.
Those matrices are illustrated in the example shown in Fig. 2.
In a general case, for an OLS code that can correct ¢ errors, the
parity check matrix is constructed using 2¢ M; matrices. The M;
matrices have only a one in each of its columns. Therefore, the first
k = m? columns in H have a weight of 27. Additionally, as the Latin
squares used to derive the M; matrices are orthogonal, any pair of
columns has at most a position with a one in common. This, as
discussed before, enables the use of OS-MLD for decoding.

III. PROPOSED METHOD TO EXTEND OLS CODES

The proposed method is based on the observation that by con-
struction, the groups formed by the m parity bits in each M;
matrix have at most a one in every column of H. For the
example in Fig. 2, those groups correspond to bits (or rows)
1-4 (My), 5-8 (M), 9-12 (M3), and 13-16 (My). Therefore, any
combination of four bits from one of those groups will at most share
a one with the existing columns in H. For example, the combination
formed by bits 1, 2, 3, and 4 shares only bit 1 with columns 1, 2, 3,
and 4. This is the condition needed to enable OS-MLD. Therefore,
combinations of four bits taken all from one of those groups can
be used to add data bit columns to the H matrix. For the code with
k = 16 and r = 2 shown in Fig. 2, we have m = 4. Hence, one combi-
nation can be formed in each group by setting all the positions in the
group to one. This is shown in Fig. 3, where the columns added are
highlighted. In this case, the data bit block is extended from k = 16 to
k = 20 bits.
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The proposed method first divides the parity check bits in groups
of m bits given by the M; matrices. Then, the second step is for
each group to find the combinations of 2¢ bits such that any pair
of them share at most one bit. This second step can be seen as
that of constructing an OS-MLD code with m parity check bits.
Obviously, to keep the OS-MLD property for the extended code,
the combinations formed for each group have to share at most one
bit with the combinations formed in the other 2t — 1 groups. This is
not an issue as by construction, different groups do not share any bit.

When m is small finding, such combinations is easy. For example,
in the case considered in Fig. 3, there is only one possible combina-
tion per group. When m: is larger, several combinations can be formed
in each group. This occurs, for example, when m = 8. In this case,
the OLS code has a data block size k = 64. With eight positions
in each group, now two combinations of four of them that share
at most one position can be formed. This means that the extended
code will have eight (4 x 2) additional data bits. As the size of the
OLS code becomes larger, the number of combinations in a group
also grows. For the case m = 16 and k = 256, each group has
16 elements. Interestingly enough, there are 20 combinations of four
elements that share at most one element. In fact, those combinations
are obtained using the extended OLS code shown in Fig. 3 in each
of the groups. Therefore, in this case, 4 x 20 = 80 data bits can be
added in the extended code. The parameters of the extended codes
are shown in Table I, where n — k = 2 tm is the number of parity
bits. The data block size for the original OLS codes (koLs) is also
shown for reference.

The method can be applied to the general case of an OLS code
with k = m? that can correct ¢ errors. Such a code has 2tm parity
bits that as before are divided in groups of m bits. The code can be
extended by selecting combinations of 2¢ parity bits taken from each
of the groups. These combinations can be added to the code as long
as any pair of the new combinations share at most one bit. When m
is small, a set of such combinations with maximum size can be easily

Parity check matrix H for the extended OLS code with k = 20 and t = 2.

found. However, as m grows, finding such a set is far from trivial (as
mentioned before, solving that problem is equivalent to designing an
OS-MLD code with m parity bits that can correct ¢ errors). An upper
bound on the number of possible combinations can be derived by
observing that any pair of bits can appear only in one combination.
Because each combination has 2¢ bits, there are (22t) pairs in each
combination. The number of possible pairs in each group of m bits
is (’5) Therefore, the number of combinations Ng in a group of m
bits has to be such that

m 2t
(5)=(3) xmo @
which can be simplified as
m% —m - N 3)
42—y -

For the examples in Table I, the above equality is met for
m = 4 and m = 16 but not for m = 8. This shows that the upper
bound will be achieved only in some cases. Because there are 2t
groups, the total number of combinations (and therefore of data bits
that can be added to the code) N¢ can be bounded by

m? —m

= Nc @)
which shows that the number of combinations, and therefore the ben-
efits of the code extension decreases with 7. That is, why the examples
presented so far in this brief are for double ECCs. In Table II, the
parameters of the extended codes when ¢ = 3 are summarized.
In this case, there is no possibility to extend a code with m = 4
as combinations of 2¢ = 6 bits are needed. When m = 8, one
combination can be added to each group. Finally, for m = 16, three
combinations are possible. In any case, it can be observed that, as
expected, for these triple error correction (TEC) codes, the proposed
method provides smaller benefits than for DEC codes.
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TABLE I
PARAMETERS OF THE DEC OLS EXTENDED CODES
k()LS kExtended n'k m
16 20 16 4
64 72 32 8
256 336 64 16
TABLE II
PARAMETERS OF THE TEC OLS EXTENDED CODES
k()LS kExIended n'k m
64 70 48 8
256 274 96 16
TABLE III
AREA ESTIMATES (in #m?)
OLS codes Extended codes
k Encoder Decoder k Encoder Decoder
16 299 921 20 382 1097
64 1198 3928 72 1458 4220
256 4613 10721 336 6277 14354

As discussed before, the study of methods to find the optimum set
of combinations that can be used to extend the code in a general
case is a complex mathematical problem that is left for future
work.

One particular case for which a simple solution can be found is
when m = 2t x [. In this case, an OLS code with a smaller data
block size (I2) can be used in each group. One example for ¢ = 2
is when m = 16 (k = 256) for which the OLS code with block size
k = 42 can be used in each group as explained before. Similarly, for
t = 2, when k =1024 (m = 32) the OLS code of size k = 82 can
be used in each group.

From Tables I and II, it can be observed that the data block
sizes of the extended codes are not a power of two. As in many
memory applications, the data block size is a power of two; this may
limit the use of the extended OLS codes. However, in some specific
applications, word sizes that are not a power of two are used and
in those cases, the proposed codes can be useful. The codes can
also be used when the memory is extended to incorporate flags or
tags as is the case in caches [16]. For example, in a cache with a
256-bit data line, the extended DEC code with m = 16 can be used
to support up to 80-tag bits. This will be more than enough for
a 64-bit processor. Another potential application is the protection
of content addressable memories (CAMs) and their associated data.
As an example, consider a CAM used for traffic classification with
64-bit entries and an associated type of service field of 8 bits. In this
case, the extended DEC code with m = 8 can be used to protect both
the CAM entry and the type of service field. These examples show
how the extended codes can be used to protect both the data stored
in the memory and the associated flags or tags. Finally, the code with
smallest block size (20 data bits) can also be useful to protect groups
of flip-flops in digital circuits.

IV. EVALUATION

For the parameters shown in Table I, the proposed DEC extended
codes have been implemented in MATLAB. Then, their error correc-
tion capabilities have been verified using random errors. Because the
codes are double ECCs, one or two bit errors have been inserted
randomly. One million random combinations were tested and the
errors were corrected in all the cases.
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TABLE IV
DELAY ESTIMATES (in nanoseconds)

OLS codes Extended codes
k Encoder Decoder k Encoder Decoder
16 0.17 0.36 20 0.20 0.38
64 0.24 0.43 72 0.25 0.44
256 0.30 0.49 336 0.33 0.54

TABLE V
PER BIT AREA ESTIMATES (in ymz)

OLS codes Extended codes
k Encoder Decoder k Encoder Decoder
16 18.69 57.56 20 19.10 54.85
64 18.72 61.38 72 20.25 58.61
256 18.01 41.88 336 18.68 42.72

The encoders and decoders have also been implemented in
HDL and synthesized for the 45-nm Oklahoma State Univer-
sity (OSU) FreePDK standard cell library [17] using Synopsys
design compiler. The synthesizer was configured to optimize the
delay. Therefore, the results provide the lowest delay that can be
achieved. The reported circuit area could be reduced at the expense
of increasing the delay. The area and delay results are presented in
Tables III and IV. They are also compared with those of the original
OLS codes. It can be observed that the area is larger than for the
OLS codes. When the area is, however, divided by the number of
data bits k, the area is roughly the same. This is shown in Table V,
where the area/data bit is shown.

The delay for the proposed codes is slightly higher than for the
original OLS codes. This increase is also due to the increase in data
block size. Larger blocks mean that each parity check has more bits
and therefore more delay. In particular for m = 4, the number of
bits that participate in the extended code is five compared with four
in the original OLS code. For m = 8, the number increases from
eight to nine and finally for m = 16, the number grows from 16 in
the original OLS code to 21 in the extended codes. Those increases
are moderate and inline with the results observed in the synthesized
circuits.

In summary, the results confirm that the area and delay of the
proposed codes are similar to that of the original OLS codes. The
increases observed are mostly due to the larger block size of the
extended codes.

V. CONCLUSION

In this brief, a method to extend OLS codes has been pro-
posed. The method has been used to derive extended double ECCs for
different block sizes. The extended codes have the same number of
parity bits as the original OLS codes but a larger number of data bits.
Therefore, the relative overhead is smaller. The derived codes can be
decoded using OS-MLD as the original OLS codes. The decoding
area and delay are also similar. Therefore, the new codes can be
an interesting option to reduce the number of parity bits required to
implement multiple bit error correction in memories or caches.

The proposed method can be applied to any OLS code but in some
cases, obtaining the combinations to extend the code is difficult. This
can be formalized as a mathematical problem that involves the design
of OS-MLD codes with smaller data block sizes. The study of this
complex problem is left for future work. Most of the codes derived
in this brief are double ECCs. The use of the method for codes that
can correct more than two errors will be also addressed in future
work. In any case, as discussed in this brief, the proposed method is
expected to provide better benefits for double ECCs.
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Improved Analytical Delay Models for RC-Coupled
Interconnects

Feng Shi, Xuebin Wu, and Zhiyuan Yan

Abstract— As process technologies scale into deep submicrometer
region, crosstalk delay is becoming increasingly severe, especially for
global on-chip buses. To cope with this problem, accurate delay models
of coupled interconnects are needed. In particular, delay models based
on analytical approaches are desirable, because they are not only largely
transparent to technology, but also explicitly establish the connections
between delays of coupled interconnects and transition patterns, thereby
enabling crosstalk alleviating techniques such as crosstalk avoidance
codes. Unfortunately, existing analytical delay models, such as the widely
cited model in [1], have limited accuracy and do not account for loading
capacitance. In this brief, we propose analytical delay models for coupled
interconnects that address these disadvantages.

Index Terms—Bus, crosstalk, delay, interconnect.

I. INTRODUCTION

Crosstalk caused by coupling capacitance between adjacent wires
leads to additional delay to multiwire buses. As the process tech-
nologies scale into deep submicrometer region, coupling capacitance
between adjacent wires and hence crosstalk delays increase greatly.
According to the International Technology Roadmap of Semicon-
ductors [2], gate delay decreases with scaling, while global wire
delay increases. Hence, the crosstalk delay problem is becoming
increasingly severe in VLSI designs, especially for global on-chip
buses, and will become the performance bottleneck in many high-
performance VLSI designs.

This brief focuses on analytical delay models applicable to gen-
eral RC-coupled interconnects. Although various delay models of
interconnects have been proposed in the literature [1], [3]-[7], few
are comparable with our work in this brief. Some delay models
[3], [7] do not consider crosstalk from adjacent wires. In addition,
most previously proposed delay models are based on numerical
approaches [3], [5]-[7]. They can achieve high accuracy, but they
have several drawbacks, such as bulky lookup tables, dependence on
technology, poor portability, and high complexity. A widely cited
analytical delay model proposed in [1] and [4], which uses the
similar methodology to that in [8], appears to be the most comparable
previous delay model to our work in this brief.

Based on the model in [1] and [4], the delay of the kth wire (k €
{1,2,---,m}) of an m-bit bus is given by

wol(1+)A2 — 1A A, k=1
ol(1+20)A7 — AA(Ak—1 + Agy1)], k#1Lm
wl(1+ 2) A7, = AAm Ay 1], k=m

where A is the ratio of the coupling capacitance between adjacent
wires and the ground capacitance of each wire, 7q is the intrinsic
delay of a transition on a single wire, and Ay is 1 for 0 — 1
transition, —1 for 1 — O transition, or 0 for no transition on the
kth wire. We observe that in this model, the delay of the kth wire

T = )

Manuscript received March 20, 2012; revised January 29, 2013 and April 8,
2013; accepted July 25, 2013. Date of publication August 22, 2013; date of
current version June 23, 2014.

F. Shi and Z. Yan are with the Department of Electrical and Com-
puter Engineering, Lehigh University, Bethlehem, PA 18015 USA (e-mail:
fes209 @lehigh.edu; yan@lehigh.edu).

X. Wu is with LSI Corporation, Milpitas, CA 95035 USA (e-mail:
xuebin.wu@]lsi.com).

Digital Object Identifier 10.1109/TVLSI1.2013.2275071

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


