
884 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 14, NO. 3, SEPTEMBER 2014

A Method to Design SEC-DED-DAEC Codes
With Optimized Decoding

Pedro Reviriego, Member, IEEE, Jorge Martínez, Salvatore Pontarelli, and Juan Antonio Maestro, Member, IEEE

Abstract—Single error correction–double error detection–
double adjacent error correction (SEC-DED-DAEC) codes have
been proposed to protect SRAM devices from multiple cell upsets
(MCUs). The correction of double adjacent errors ensures that
the most common types of MCUs are corrected. At the same
time, SEC-DED-DAEC codes require the same number of parity
check bits as traditional SEC-DED codes. The main overhead
associated with SEC-DED-DAEC codes is the increase in decoding
complexity that can impact access time and circuit power and
area. In this paper, a method to design SEC-DED-DAEC codes
with optimized decoding is presented and evaluated. The proposed
scheme starts by setting some constraints on the parity check
matrix of the codes. Those constraints are then used to simplify
the decoding. The proposed scheme has been implemented and
evaluated for different word-lengths. The results show that, for
data words of 32 bits, the scheme can be implemented with the
same number of parity check bits as SEC-DED codes. For 16 and
64 bits words, an additional parity check bit is required, making
the scheme less attractive. With the proposed method, the decoders
can be optimized for area or speed. Both implementations are
evaluated and compared with existing SEC-DED-DAEC decoders.
The results show that the proposed decoders reduce significantly
the circuit area, power, and delay.

Index Terms—SEC-DAEC codes, Multiple Cell Upsets (MCUs),
error correction codes, SRAM memories.

I. INTRODUCTION

EMBEDDED SRAM memories are an important fraction
of the circuit area in modern System on Chip (SoCs) and

its importance is expected to increase in the future. Soft errors
are a reliability issue for SRAM memories and an increasing
percentage of radiation induced soft errors in SRAM memo-
ries affect several memory cells causing Multiple Cell Upsets
(MCUs) [1]. The presence of MCUs means that traditional
Single Error Correction Double Error Detection (SEC-DED)
codes [2], can no longer provide an effective protection unless
interleaving is used. Interleaving places bits that belong to
the same logical word in cells that are physically apart thus
ensuring that the errors caused by an MCU affect at most one
bit per word [3]. This can be done because the errors caused
by an MCU affect nearby cells located close to the impact of
the radiation particle [4]. However, the use of interleaving can
impact the area, power and delay of the memory and may not be

Manuscript received March 17, 2014; accepted June 19, 2014. Date of
publication July 11, 2014; date of current version September 2, 2014. This work
was supported by the Spanish Ministry of Science and Innovation under Grant
AYA2009-13300-C03-01.

P. Reviriego, J. Martínez, and J. A. Maestro are with Universidad Antonio
de Nebrija, 28040, Madrid, Spain (e-mail: previrie@nebrija.es; jmartine@
nebrija.es; jmaestro@nebrija.es).

S. Pontarelli is with the National Inter-University Consortium for Telecom-
munications (CNIT), 43124 Parma, Italy (e-mail: pontarelli@ing.uniroma2.it).

Digital Object Identifier 10.1109/TDMR.2014.2332364

practical for small memories and for some types of memories
like Content Addressable Memories [5]–[7]. In those cases,
an alternative is to use multi-bit error correction codes. For
example in [8], the use of Double Error Correction (DEC) Bose-
Chaudhuri-Hocquenghem (BCH) codes was studied. However,
these codes require a large number of additional parity bits and
a significant decoding complexity. To avoid these issues, codes
that can correct adjacent errors can be used as those are the ones
caused by MCUs in most cases. In the last years, several codes
have been proposed to correct double adjacent errors [6], [9],
[10]. These codes are known as Single Error Correction Double
Error Detection Double Adjacent Error Correction (SEC-DED-
DAEC) codes. Protection to cover also MCUs that affect more
than two adjacent cells has also been investigated [11], [12].

The use of SEC-DED-DAEC codes does not typically require
additional parity check bits and therefore does not increase
the memory size. The main issue for these codes is that they
increase decoder complexity as more error patterns have to
be identified to correct the errors. The complexity increase
impacts the decoder area, power and delay thus affecting the
performance of the memory. This is especially relevant for
embedded memories as there can be hundreds of them in a SoC
and they have to operate a clock speed.

A method to reduce the decoding complexity for some SEC
and SEC-DED codes has been recently proposed in [13]. The
scheme focuses on codes with constant weight on the data
columns of the parity check matrix. This enables a simplifi-
cation of the error location phase of decoding. In this paper,
those ideas are extended so that they can be applied to SEC-
DED-DAEC codes that meet some requirements. In addition to
presenting the scheme, codes for commonly used word lengths
are derived using an automated process. The decoders for these
codes are then compared with those of traditional SEC-DED-
DAEC codes to illustrate the benefits of the proposed scheme
in reducing decoding complexity.

The rest of the paper is organized as follows: Section II
presents an overview of existing SEC-DED and SEC-DED-
DAEC codes focusing on their decoding. Then in Section III the
proposed SEC-DED-DAEC codes and the optimized decoding
implementations are presented. In Section IV, the decoders are
implemented and compared to existing SEC-DED-DAEC codes
in terms of decoding complexity. Finally the conclusions are
summarized in Section V.

II. TRADITIONAL SEC-DED-DAEC CODES

Most error correction codes used to protect memories are
systematic linear block codes [14]. A systematic linear block

1530-4388 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



REVIRIEGO et al.: METHOD TO DESIGN SEC-DED-DAEC CODES WITH OPTIMIZED DECODING 885

code takes a word of k bits and produces a word of n bits by
adding n-k parity check bits. The encoding operation can be
expressed as a matrix multiplication by a generating matrix G.
Similarly, the decoding starts with the syndrome computation
that is obtained by multiplying the stored word by the parity
check matrix H. In the absence of errors, the syndrome is an
all zero vector. When a single error occurs, the syndrome is
equal to the column of the H matrix that corresponds to the
erroneous bits. Therefore, when all columns in H are different
single errors can be located and corrected. When a double error
occurs, the syndrome is equal to the modulo two addition of the
columns of the affected bits. To achieve double error detection,
a common technique is to use only odd-weight columns in the
parity check matrix [2]. When that is done a double error is
detected when the syndrome has an even weight. Odd weight
syndromes are assumed to correspond to single errors. To
implement Double Adjacent Error Correction (DAEC), the sum
of any two adjacent columns has to be different from the sum
of any other two adjacent columns and any single column [6].

The generating and parity check matrixes of SEC-DED-
DAEC codes can be obtained using different algorithms
that search for matrixes that meet the required conditions.
Those are:

1) All columns in H are different and non-zero.
2) All columns in H have an odd-weight with data columns

having a weight larger than one.
3) The sums of two adjacent columns in H are all different

and also different from all columns and non zero.

Additional conditions may be added to minimize the number
of ones in the matrixes in order to reduce encoding and de-
coding complexity or to reduce the probability of miscorrection
when a triple error occurs [15].

The decoding of both SEC-DED and SEC-DED-DAEC
codes is performed in three steps: syndrome computation, error
location and error correction [16]. The syndrome computation
is basically to re-compute the parity check equations. The error
location phase is for single errors to compare the syndrome with
each of the columns in the H matrix. For double adjacent errors,
the comparison is done with the sum of the adjacent columns.
Finally error correction can be done with a XOR gate.

To illustrate the decoder, let us consider a SEC-DED-DEAC
code with k = 16 and n = 22 presented in [6] that has the
following parity check matrix:

1100110001110100100000

0001010011011001010000

1010100111100011001000

1001001110010110000100

0110101100001101000010

0111011000101010000001. (1)

This matrix meets all the requirements and the code is there-
fore a SEC-DED-DAEC code. The structure of the decoder is
shown in Fig. 1. The first phase of decoding is a set of XOR gates
that computes the syndrome bits (si). Then a set of AND gates

Fig. 1. Structure of the decoder for the SEC-DED-DAEC code.

is used to locate errors by comparing the syndrome with the
columns in H and finally correction can be implemented with
an XOR gate. Since for this code n− k = 6 the AND gates that
locate error patterns will have six inputs of which only a few are
shown in the Figure. For each bit there will be one single error
pattern and one or two double adjacent patterns. In the Figure,
the first data bit has only one adjacent pattern (columns 1 and
2) while the bit 16 has two adjacent patterns (columns 15 and
16 and columns 16 and 17). Those patterns are combined with
an OR gate whose output is the input to the correction gate.
Finally, the logic to implement double error detection is also
shown in the figure.

The decoding of SEC-DED codes is similar but since there
are less error patterns to correct, the error location logic is
simpler.

III. PROPOSED SEC-DAEC CODES

As mentioned before, traditional SEC-DED codes have odd-
weight in the data columns of their parity check (H) matrixes
[2]. Therefore single errors produce a syndrome with an odd
number of ones and double errors a syndrome with an even
number of ones. This feature is used in SEC-DED codes to
implement the DED feature. In the following, it will be used
to optimize the implementation of DAEC.

Recently, a method to optimize the decoding of SEC and
SEC-DED codes with constant weight has been presented [13].
This scheme is based on the observation that when all the data
columns in the H matrix have the same weight, errors can be
located by checking only that the ones in the syndrome match
those in the data column. The modification reduces significantly
the cost of locating errors and therefore lowers the decoding
complexity.



886 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 14, NO. 3, SEPTEMBER 2014

A similar decoding optimization can be applied to a
SEC-DAEC code when the code is designed to meet the fol-
lowing conditions (in addition to those required for a code to be
SEC-DED-DAEC):

1) All the data columns of the parity check (H) matrix have
a constant odd weight wo larger than one.

2) The sum (modulo two) of any two adjacent columns
involving a data column has a constant even weight we

larger than wo.

In that case decoding can be done as follows:

1) Compute the syndrome.
2) If the syndrome has an odd number of errors, correct

the data column that matches the ones in the syndrome
(if any).

3) Correct the adjacent columns whose sum (modulo two)
matches the ones in the syndrome (if any).

To illustrate the scheme, the code with the H matrix given by
(2) as follows will be used:

01000000000000001000000

10010100101000000100000

00101010000110100010000

10110001010101100001000

00001011101101010000100

11100110110011010000010

01011101011010110000001. (2)

This code meets the conditions required to implement the
optimized decoding. It can be observed that the weight of
all the data columns (wo) is three and the sum of any two
adjacent data columns (we) is four. In addition it must be noted
that the code has seven parity check bits, one more than the
matrix in (1).

The proposed decoder is shown in Fig. 2. The structure is the
same as for the traditional SEC-DED-DAEC code in Fig. 1.
For the single error patterns, the “not DED” signal is used
to ensure that the number of ones in the syndrome is odd.
The main difference is that the error location logic is now
implemented with four input AND gates instead of six input
gates. The inverters at some inputs of those gates are also no
longer needed. This results in a simplification of the decoding
logic as will be seen in the evaluation presented in the next
section. In a general case, the complexity required to locate
the errors for a block with k data bits and n-k check bits is:
n-k-1 XOR (2 input) gates, k AND (wo + 1 input) gates and k
AND (we input) gates. This compares with a traditional SEC-
DED-DAEC code that requires 2k AND (n-k input) gates and k
inverters.

The decoder in Fig. 2 reduces the circuit area compared to a
traditional SEC-DED-DAEC decoder but is slower. This can be
explained as the “not DED” signal introduces a long path in the
error identification and correction logic.

Fig. 2. Structure of the first proposed (area optimized) decoder for the
SEC-DED-DAEC code.

An alternative implementation of the decoder optimized for
speed can be done as follows:

1) Compute the syndrome.
2) Correct the data column that matches the ones and zeroes

in the syndrome (if any).
3) Correct the adjacent columns whose sum (modulo two)

matches the ones in the syndrome (if any).

In this second implementation, the single error patterns are
identified with both zeroes and ones. This requires k AND (n-k
input) gates. However, the double adjacent errors are identified
with k AND (we input) gates and therefore the decoding is
still simplified. At the same time the DED signal is not used
avoiding the impact on delay. In the rest of the paper, the first
implementation will be referred to as proposed scheme one and
the second one as proposed scheme two.

In both cases, codes that meet the conditions required to
apply the proposed decoding methods are needed. To that
end, an automated procedure has been used to generate the
codes. A program has been implemented in JAVA to construct
the matrixes adding columns one at a time and checking the
conditions at each step.

For a data word length of 32 bits, the derived codes have the
same number of parity check bits as SEC-DED codes while for
16 and 64 bits one additional bit is needed. In a general case,
the number of parity check bits has to be such that there are at
least k combinations of the bits when taken in groups of wo and
we. For example, for n− k = 6 there are only 15 combinations
of weight four and therefore it is not possible to find a code for
k = 16. This is a necessary condition for the code to exist but
it does not guarantee that a code can be built. The automated
procedure can be then used to find a code and when it fails to



REVIRIEGO et al.: METHOD TO DESIGN SEC-DED-DAEC CODES WITH OPTIMIZED DECODING 887

TABLE I
PARAMETERS OF THE PROPOSED SEC-DED-DAEC CODES

do so, the number of parity check bits can be increased and the
process can be repeated again.

The parity check matrixes for the derived codes are shown in
(2) for k = 16, in the following for k = 32:

000011000000010111010101010101010000001

101100010111001100000100010101101000000

011010101101110100111001000000100100000

110001010010100001001111101000100000010

010101111001000010010010100011000010001

100110100100101001100010001110000001001

001000001010011010101000111010000000100 (3)

and in (4), shown at the bottom of the page, for k = 64 . For
16 and 64 bits one extra parity bit is needed and matrixes are
found in systematic form. For k = 32 and n− k = 7 there are
35 combinations of weight three and four. Since only 32 of
each are needed, a code can be found. However, the automated
procedure was only capable of constructing the first 31 data
columns of the matrix. To complete the matrix, the remaining
data bit was manually placed after the check bits to meet the
conditions. The parity check bits had also to be rearranged to
that end. It is important to note that the code is still systematic
and that (3) only shows how the bits would be placed in the
memory. When reading or writing the words, the data can be
rearranged so that encoding and decoding are the same as for
the other codes.

The parameters of the codes are summarized in Table I. As
mentioned before, the number of parity check bits is the same
as for SEC-DED codes for k = 32 while for k = 16 and 64 an
additional bit is needed.

TABLE II
AREA ESTIMATES (IN μm2) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN AREA

TABLE III
DELAY ESTIMATES (IN NANOSECONDS) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN AREA

TABLE IV
POWER ESTIMATES (IN mW) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN AREA

IV. EVALUATION

The proposed decoders have been implemented in HDL and
synthesized for a 45 nm library [17]. The SEC-DED-DAEC
codes presented in [6] have also been implemented to assess
the benefits of the proposed decoding implementations. The
decoders have been synthesized using Synopsis Design Com-
piler. Two settings were used for synthesis, maximum effort to
optimize area and maximum effort to optimize delay. The first
configuration is useful when circuit area is the priority while the
second is relevant for high speed memories in which delay is
critical. The area, delay and power estimates are summarized in
Tables II–IV for area optimized synthesis and in Tables V–VII
for delay optimized synthesis.

In the case of maximum effort to optimize area, it can be
observed that the proposed scheme one provides significant cir-
cuit area savings for k = 16 (26.6%) and 32 (19.2%) while for

0111010101010101000000000100000000000000000000000000000000000000100000000

1100101010101010111011010011010101000100000000000000000000000000010000000

0010000000100000101110101000101010101010110101010100000000000000001000000

1000111000001000000100001010100000110001101010101001010010100000000100000

0001001110000010010100000000011010010011011010000010101000011010000010000

1000010011110000000001110000001100011000100001101011000101010110000001000

0001100001000111100000100001000111100000001100110000101110110101000000100

0010000000011100001001000101110000001101010000011110011011001101000000010

0100000100000001010010011110000001000110000111000101110101101011000000001 (4)



888 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 14, NO. 3, SEPTEMBER 2014

TABLE V
AREA ESTIMATES (IN μm2) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN DELAY

TABLE VI
DELAY ESTIMATES (IN NANOSECONDS) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN DELAY

TABLE VII
POWER ESTIMATES (IN MW) FOR SYNTHESIS

WITH MAXIMUM EFFORT IN DELAY

k = 64, the area is roughly the same. These benefits in circuit
area come at the expense of a significant impact on delay as can
be seen in Table III. The proposed scheme two has worse area
but lower delay as expected. In particular, it also reduces the
area compared to the traditional decoders for k = 16 (19.0%)
and 32 (4.6%) while for k = 64, the area is significantly worse.
The results for power consumption show similar values for all
implementations for k = 16 and 32 while the traditional SEC-
DED-DAEC decoder outperforms the proposed schemes for
k = 64. In summary, when the priority is to optimize circuit
area, the first proposed technique is useful for k = 16 and
k = 32 and the second proposed technique can also be used to
reduce both area and speed.

In the case of maximum effort to optimize speed, the second
proposed technique provides significant benefits for k = 64
(15.7%) while the gains are smaller for k = 16 and k = 32.
This comes at the cost of a significant impact in both circuit
area and power for k = 64. An interesting case is k = 16 in
which the second proposed implementation outperforms the
traditional decoder in area, delay and power. For the first
proposed technique, delay is worse than traditional decoders for
all word-lengths considered. In summary, the second proposed
scheme can be used when the priority is to optimize circuit
delay and in some cases it will also reduce area and power.

Finally, an important parameter of SEC-DED-DAEC codes
is the probability of miscorrection when a double non adjacent
error occurs. This has been evaluated by generating all possible
non-adjacent double error patterns and checking the percentage
of them that produce a syndrome value that is the same as that
of a double adjacent error. The results are reported in Table VIII
that also includes the percentages for the SEC-DED-DAEC
codes presented in [6]. It can be observed that the probabilities
are lower for 16 and 64 bits data words but slightly higher for

TABLE VIII
PERCENTAGE OF MISCORRECTIONS FOR

DOUBLE NON-ADJACENT ERRORS

32 bits data words. This can be explained as in the first case (16
and 64) the proposed codes require one more extra bit than the
codes in [6]. This means that there are more syndrome values
that are not used for adjacent error correction and therefore the
probability is lower.

V. CONCLUSION

In this paper, a method to optimize the decoding of
SEC-DED-DAEC codes has been presented and evaluated. The
results show that significant reductions in decoder area and
delay can be achieved for data word-lengths commonly used
in memories. The proposed scheme places some constraints on
the parity check matrix in order to simplify the decoding. In
particular, the weight of the columns and of the sum of adjacent
data columns is forced to be constant. This can then be used
to reduce the error location logic. In particular, two optimized
decoder implementations, one for area and one for delay are
proposed. The constraints in the parity check matrix can be met
without increasing the number of parity check bits for a word-
length of 32 bits. For 16 and 64 bits, an additional parity check
bit is required. Therefore, the proposed method can be applied
directly to 32 bit data memories. For other word lengths,
the proposed scheme requires additional memory and is less
attractive. The two proposed decoder implementations have
also been evaluated and compared to existing SEC-DED-DAEC
decoders. The results show that the first can be used to reduce
the circuit area and the second the delay.

REFERENCES

[1] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm
design rule,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1527–1538,
Jul. 2010.

[2] M. Y. Hsiao, “A class of optimal minimum odd-weight column SEC-DED
codes,” IBM J. Res. Develop., vol. 14, no. 4, pp. 395–401, Jul. 1970.

[3] P. Reviriego, J. A. Maestro, S. Baeg, S. Wen, and R. Wong, “Protection of
memories suffering MCUs through the selection of the optimal interleav-
ing distance,” IEEE Trans. Nucl. Sci., vol. 57, pt. 1, no. 4, pp. 2124–2128,
Aug. 2010.

[4] S. Satoh, Y. Tosaka, and S. A. Wender, “Geometric effect of multiple-bit
soft errors induced by cosmic ray neutrons on DRAM’s,” IEEE Electron
Device Lett., vol. 21, no. 6, pp. 310–312, Jun. 2000.

[5] A. Neale and M. Sachdev, “A new SEC-DED error correction code sub-
class for adjacent MBU tolerance in embedded memory,” IEEE Trans.
Device Mater. Rel., vol. 13, no. 1, pp. 223–230, Mar. 2013.

[6] A. Dutta and N. A. Touba, “Multiple bit upset tolerant memory using a
selective cycle avoidance based SEC-DED-DAEC code,” in Proc. 25th
IEEE VLSI Test Symp., 2007, pp. 349–354.

[7] S. Baeg, S. Wen, and R. Wong, “Minimizing soft errors in TCAM devices:
A probabilistic approach to determining scrubbing intervals,” EEE Trans.
Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 814, 822, Apr. 2010.

[8] R. Naseer and J. Draper, “Parallel double error correcting code design
to mitigate multi-bit upsets in SRAMs,” in Proc 34th Eur. Solid State
Circuits Conf., Sep. 2008, pp. 22–225.



REVIRIEGO et al.: METHOD TO DESIGN SEC-DED-DAEC CODES WITH OPTIMIZED DECODING 889

[9] Z. Ming, X. L. Yi, and L. H. Wei, “New SEC-DED-DAEC codes for
multiple bit upsets mitigation in memory,” in Proc. IEEE/IFIP 20th Int.
Conf. VLSI Syst. Chip, 2011, pp. 254–259.

[10] A. Dutta, “Low cost adjacent double error correcting code with complete
elimination of miscorrection within a dispersion window for multiple bit
upset tolerant memory,” in Proc. IEEE/IFIP 20th Int. Conf. VLSI Syst.
Chip, 2012, pp. 287–290.

[11] X. She, N. Li, and D. W. Jensen, “SEU tolerant memory using error
correction code,” IEEE Trans. Nucl. Sci., vol. 59, no. 1, pp. 205–210,
Feb. 2012.

[12] P. Reviriego, S. Pontarelli, J. A. Maestro, and M. Ottavi, “Low-cost single
error correction multiple adjacent error correction codes,” Electron. Lett.,
vol. 48, no. 23, pp. 1470–1472, Nov. 2012.

[13] P. Reviriego, S. Pontarelli, J. A. Maestro, and M. Ottavi, “A method to
construct low delay Single Error Correction (SEC) codes for protecting
data bits only,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 3, pp. 479–483, Mar. 2013.

[14] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2004.

[15] M. Richter, K. Oberlaender, and M. Goessel, “New linear SEC-DED
codes with reduced triple bit error miscorrection probability,” in Proc.
14th IEEE IOLTS, Jul. 2008, pp. 37–42.

[16] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124–134, Mar. 1984.

[17] J. E. Stine et al., “FreePDK: An open-source variation-aware design kit,”
in Proc. IEEE Int. Conf. MSE, Jun. 2007, pp. 173–174.

Pedro Reviriego (A’03–M’04) received the M.Sc.
and Ph.D. (Hons.) degrees in telecommunica-
tions engineering from the Technical University
of Madrid, Madrid, Spain, in 1994 and 1997, re-
spectively. From 1997 to 2000, he was an R&D
Engineer with Teldat, Madrid, working on router
implementation. In 2000, he joined Massana to work
on the development of Ethernet transceivers. During
2003, he was a Visiting Professor at the Universidad
Carlos III de Madrid, Leganés, Spain. From 2004
to 2007, he was a Distinguished Member of the

technical staff with LSI Corporation, working on the development of Ethernet
transceivers. He is currently with the Universidad Antonio de Nebrija, Madrid.
He is the author of numerous papers in international conference proceedings
and journals. He has also participated in IEEE 802.3 standardization activities.
His research interests include fault-tolerant systems, communication networks,
and the design of physical-layer communication devices.

Jorge Martínez received the B.Sc. degree in
computer science from Tecnológico de Monterrey,
Monterrey, México, and the M.Sc. degree from Uni-
versidad Complutense de Madrid, Madrid, Spain,
in 2013. He is currently working toward the Ph.D.
degree at Universidad Antonio de Nebrija, Madrid.
From 1991 to 2000, he was a Software Engineer and
a Project Manager in consultancy and engineering
companies. Since 2004, he has been a Part-Time Lec-
turer at Universidad Antonio de Nebrija. His current
research interests include software fault tolerance

and error corrections codes.

Salvatore Pontarelli received the Master’s degree
in electronic engineering from the University of
Bologna, Bologna, Italy, in 2000 and the Ph.D.
degree in microelectronics and telecommunications
from the University of Rome “Tor Vergata,” Rome,
Italy, in 2003. He was with the National Research
Council (CNR) and the Italian Space Agency (ASI)
and has been a Consultant for various Italian and
European companies for projects related to digital
design and fault tolerance in digital systems. He is
currently a Research Consultant with the National

Inter-University Consortium for Telecommunications (CNIT), Parma, Italy. His
research interests include the development of highly reliable systems, error
detection and correction codes, fault detection and recovery for arithmetic
circuits, and hardware for networking applications.

Juan Antonio Maestro (M’07) received the M.Sc.
degree in physics and the Ph.D. degree in com-
puter science from the Universidad Complutense
de Madrid, Madrid, Spain, in 1994 and 1999, re-
spectively. He has served both as a Lecturer and a
Researcher at several universities, such as the Uni-
versidad Complutense de Madrid; the Universidad
Nacional de Educación a Distancia (Open Univer-
sity), Madrid; Saint Louis University, Madrid; and
the Universidad Antonio de Nebrija, Madrid, where
he currently manages the Computer Architecture and

Technology Group. His current activities are oriented to the space field, with
several projects on reliability and radiation protection, as well as collabora-
tions with the European Space Agency. Aside from this, he has worked for
several multinational companies, managing projects as a Project Management
Professional and organizing support departments. He is the author of numerous
technical publications, both in journals and international conferences. His re-
search interests include high-level synthesis and cosynthesis, signal processing,
real-time systems, fault tolerance, and reliability.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


