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Abstract—Error correction codes (ECCs) have been used for decades
to protect memories from soft errors. Single error correction (SEC) codes
that can correct 1-bit error per word are a common option for memory
protection. In some cases, SEC codes are extended to also provide double
error detection and are known as SEC-DED codes. As technology scales,
soft errors on registers also became a concern and, therefore, SEC codes
are used to protect registers. The use of an ECC impacts the circuit
design in terms of both delay and area. Traditional SEC or SEC-DED
codes developed for memories have focused on minimizing the number of
redundant bits added by the code. This is important in a memory as those
bits are added to each word in the memory. However, for registers used
in circuits, minimizing the delay or area introduced by the ECC can be
more important. In this paper, a method to construct low delay SEC or
SEC-DED codes that correct errors only on the data bits is proposed. The
method is evaluated for several data block sizes, showing that the new
codes offer significant delay reductions when compared with traditional
SEC or SEC-DED codes. The results for the area of the encoder and
decoder also show substantial savings compared to existing codes.

Index Terms—Double error detection, error correction codes (ECCs),
single error correction (SEC), soft errors.

I. Introduction

Soft errors are an important issue for electronic circuits, and
many different techniques are used to mitigate their effects
[1]. To protect memories, error correction codes (ECCs) are
widely used [2]. ECCs have an impact on circuit delay, area,
and power consumption. The delay is added as data has to
be encoded when writing into the memory and decoded when
reading from it. The impact on area and power comes from the
encoding and decoding circuitry and also from the redundant
bits that the ECC adds to each data block. For memories, the
number of redundant bits is typically the most critical factor
as those bits are added to each memory word. This means that
the impact on area scales with memory size.

Single error correction (SEC) codes are the ones most
commonly used to protect standard memories and circuits [2],
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while more sophisticated codes are used in critical applications
such as space [3]. The main reason for this is that SEC codes
can be encoded or decoded with simple circuitry and require a
low number of redundant bits. SEC codes can correct a single
bit error per block. For memory protection, SEC codes are
commonly extended to also detect double errors. In this case,
the codes are known as SEC double error detection (SEC-
DED) codes [4].

A classical type of SEC codes is Hamming codes that can
be constructed in a simple way [5]. Hamming codes can also
be extended with a parity bit to obtain a SEC-DED code. More
sophisticated SEC-DED codes have also been proposed as, for
example, the ones described in [4], [6], and [7]. In those cases,
the number of redundant bits is kept to the lowest achievable
value, and the different codes optimize the area and delay
of the encoder and decoder or the detection of triple errors.
This is a reasonable approach for memories as the number of
redundant bits has a direct impact on memory size.

As technology scales, soft errors also become an issue for
registers used in digital circuits. SEC codes can also be used
to protect those registers that may store, for example, the state
of a finite state machine or data-path values in an arithmetic
circuit. In those cases, the design constraints for the SEC
code are different than in memories. For example, in circuits
minimizing the encoding and decoding delay may be the most
critical aspect. The impact on area is also different, as the
redundant bits are only added to the register being protected
such that their cost can be lower than that of the encoding
and decoding circuitry. In memories, since the redundant
bits are added to each word, their overall cost commonly
has the largest impact on area. Another difference is that
in memories it can be useful to correct errors on the parity
bits when decoding. This is the case, for example, when
scrubbing is used to periodically remove errors to prevent
their accumulation [8]. In registers, the correction of parity
bits has little interest as the register contents are in many cases
updated frequently and the input data comes from other circuit
elements. In spite of these differences, the SEC or SEC-DED
codes that have been used or designed to protect memories
are also used in registers. This clearly suggests the interest of
designing SEC codes that are targeted to the needs of registers.

In this paper, a method to construct SEC and SEC-DED
codes that have low encoding and decoding delay is proposed.
The proposed scheme can be used to design codes for any data
block size using a simple script. To illustrate the benefits of
the method, the derived SEC codes are compared to Hamming
SEC codes and the proposed SEC-DED codes with the opti-
mized SEC-DED codes presented in [6]. The results show that
they achieve a significantly lower delay and also a lower area
for the encoder and the decoder. The proposed codes require,
in most cases, more redundant bits than traditional codes. This
limits their applications to large memories, but is not an issue
for registers where the area of the encoder and decoder can be
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larger than that of the register itself. Therefore, the proposed
method can be used to design SEC or SEC-DED codes that
are tailored for the protection of registers in circuits. Another
application of the proposed codes is the protection of high-
speed memories or caches in which speed is more important
than area.

The rest of this paper is organized as follows. Section II
describes single error correction codes analyzing, in detail, the
encoder and decoder. In Section III, the proposed method to
construct low delay SEC and SEC-DED codes is presented. In
Section IV, the derived codes are evaluated in terms of area and
delay and compared with existing codes. Finally, conclusions
of this paper and some ideas for future work are summarized
in Section V.

II. Single Error Correction Codes

A linear block code takes k data bits and produces an n-bit
block [9]. In many applications, systematic codes that preserve
the original k data bits and simply add n-k parity bits are
preferred. A given linear block code can be described by its
generator matrix G. Given a block of k data bits, the n bits
codeword is obtained by multiplying the data block by the
generator matrix. As an example, the generator matrix for an
SEC Hamming code for k = 8 and n = 12 is shown in (1). The
last four columns define the added parity bits. The generator
matrix is used to encode the data block

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

To decode a codeword, the parity check matrix H is used.
This matrix when multiplied by a codeword will be an all
zero vector if there are no errors. If there is an error, the value
of that vector, usually called syndrome, will serve to detect
the error and correct it. The H matrix for the SEC Hamming
code previously considered is shown in (2). It can be observed
that all columns in the matrix are different. This means that
any single-bit error will produce a different syndrome, and
therefore the error can be corrected

H =

⎡
⎢⎢⎣

1 1 0 1 1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0 0 1 0 0
0 1 1 1 0 0 0 1 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 1

⎤
⎥⎥⎦ . (2)

The structure of the encoder and decoder can be explained
using the G and H matrixes. Encoding is simply computing
the multiplication of the input data block by the G matrix.
This requires a number of XOR gates for each column in G
that is proportional to the number of ones in that column.
Decoding starts by multiplying the H matrix by the codeword.
This requires a number of XOR gates for each row in H that
is proportional to the number of ones in that row. Then, the

Fig. 1. Encoder for the SEC Hamming code with k = 8.

Fig. 2. Structure of the decoder for the SEC Hamming code with k = 8.

obtained syndrome must be checked against every column in
H and if there is a match; that is the bit in error that is then
corrected. Each of those checks requires an n − k input AND

gate. The encoder for the Hamming code used as an example
is illustrated in Fig. 1. The data bits (di) are the inputs and
the parity check bits (ci) the outputs.

The structure of the decoder is shown in Fig. 2. In this
case, the data bits (di) and the parity check bits (ci) are the
inputs, and the outputs are the corrected data bits (dic). It can
be observed that the complexity and delay is larger in the case
of the decoder as it is normally the case for most ECCs.

The number of parity bits required by a Hamming code
grows logarithmically with the data block size, and the values
for common block sizes are shown in Table I. These values
are the same for other SEC codes, and as discussed before are
an important parameter when the codes are used in memories.

SEC-DED codes are similar to SEC codes and can be
obtained by using a parity check matrix H with an odd number
of ones (odd weight) in all its columns [4]. This reduces the
number of combinations that can be used in the columns, and
therefore increases the number of additional bits required. This
can be observed in Table I, where the parity check bits for
traditional SEC-DED codes are illustrated. The encoding and
decoding is similar to that of SEC codes with the addition of
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TABLE I

Number of Parity Check Bits in Existing SEC

and SEC-DED Codes

k SEC (Hamming) SEC-DED [4], [6]
8 4 5
16 5 6
32 6 7
64 7 8

TABLE II

Number of One Elements in the H Matrix for Different Codes

k Hamming Proposed Hsiao [7] Proposed
SEC SEC SEC-DED SEC-DED SEC-DED

8 22 21 29 27 29
16 43 39 54 52 54
32 87 73 103 104 103
64 186 140 216 216 201

some logic to detect double errors. This logic simply performs
the OR of the n − k syndrome bits and also the XOR of those
bits. A double error is detected when the OR takes a value of
one (at least one syndrome bit is different from zero, therefore
there are errors) and the XOR a value of zero (an even number
of syndrome bits are different from zero, i.e., more than one
error has occurred).

The number of ones in the parity check matrix is related
to the number of XOR gates needed to generate and check the
parity check bits. Therefore, it can be used as a first estimate
of the complexity of the encoders and decoders [6]. The values
for the different codes and block sizes are provided in Table
II. The proposed SEC and proposed SEC-DED are the values
for the codes that will be presented in the remainder of this
paper. It can be observed that SEC codes have less ones than
SEC-DED codes as they are simpler. For the Hamming codes,
columns have been reordered to ensure that the ones with the
lowest weights are used for the data bits. The SEC-DED codes
with the lowest number of ones are those presented in [6], and
therefore they will be used as the reference for comparison in
the following. It is important to note that for the decoder, the
number of ones gives only a rough idea of the complexity as
the logic to identify the syndrome values that is independent
of the number of ones is the most complex block.

III. Construction of Low Delay Single-Error

Correction Codes

The proposed method to construct SEC and SEC-DED
codes tries to minimize the number of ones in each row and in
each column of the H matrix. Reducing the number of ones in
the rows lowers the delay when computing the parity bits in
the encoder and also when recomputing the parity checks in
the decoder. Reducing the number of ones in the columns of
the H matrix does not lower the delay by itself. To achieve a
reduction in the delay, the final phase of decoding is modified.
This is done by checking only for the bits that are one in each
column to correct the corresponding bit.

For this modification to work, this checking must be suffi-
cient to uniquely identify the column of H corresponding to

the bit affected by the error. This condition is satisfied if no
column of H includes all the ones present in another column.

For data bits, this can be achieved for example, if all the
data bits have the same number of ones w in their column of
the H matrix. Then, as the columns are different, no column
can include all the ones in another column as that would imply
that the two columns are equal. To minimize the number of
ones, the value w = 2 can be used to obtain SEC codes. It is
also interesting to analyze the case w = 3 as in that case the
code is SEC-DED.

Since for the parity bits the columns have only a one, the
condition is not met as other columns have a one in that bit.
Therefore, this modification cannot correct errors in the parity
bits. This is not an issue for registers as the correction of
parity bits is not normally needed as discussed before. The
decoder modification combined with a low number of ones in
the columns of the H matrix results in an additional reduction
of the decoding delay.

The method to construct the code starts by finding the
smallest value of n − k for which the following is true:(

n − k

w

)
≥ k. (3)

For w = 2, this value can be found analytically by solving
(3) that is a quadratic equation in n. As the value of n has to
be larger than k, only one of the two possible solutions of the
equation is valid in our case. The value of n − k obtained is

n − k ≥
⌈

1 +
√

8k + 1

2

⌉
(4)

that shows a growth of the number of parity bits with the
square root of k that is larger than the logarithmic growth of
Hamming codes. This means that as k increases, the overhead
of the proposed codes in terms of the number of additional
parity bits compared to Hamming will also increase.

Similarly, for w = 3, the solution to (3) is given by

n−k ≥
(√

243k2 − 1

33/2
+ 3k

)1/3

+
1

3

(
243k2 − 1

33/2
+ 3k

)1/3 + 1

(5)
that, as k is larger than one, can be approximated by

n − k ≥ (6k)1/3 + 1. (6)

The growth of the number of parity check bits with k is
smaller than for w = 2, but is still larger than the logarithmic
growth of traditional SEC-DED codes.

In the second step to constructing the codes, a different
combination of w of the n − k added bits is used for each of
the first k columns of the H matrix. Equation (3) guarantees
that there are sufficient different combinations. The remaining
n − k columns form an identity matrix of size n − k. An H
matrix constructed using this procedure for w = 2 and k = 8
is shown in (7). Compared with the matrix in (2), it can be
observed that the number of parity bits (n − k) is five instead
of four. However, the maximum number of ones in any row
is five compared with six in (2). The number of ones is two
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Fig. 3. Structure of the decoder for the proposed SEC code with k = 8.

TABLE III

Number of Parity Bits in the Proposed SEC and SEC-DED Codes

k SEC (Weight Two) SEC-DED (Weight Three)
8 5 5
16 7 6
32 9 7
64 12 9

in every column compared to some columns with three ones
in the Hamming matrix. This reduction in the number of ones
enables a lower encoding and decoding delay. The proposed
decoder is illustrated in Fig. 3. Compared with the one in
Fig. 2, it can be observed that the logic depth is significantly
smaller. The reduction in the upper part comes from having
less ones in the rows of H. The reduction in the lower part
comes from having only two ones in the columns of H and
using the modified decoding to correct errors.

H =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 1 0 0 0
0 1 1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 0 1 0
1 1 0 1 0 0 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (7)

In a general case, a Hamming code will have rows with a
number of ones that is roughly k/2. This compares with the
proposed SEC codes (w = 2) for which the number of ones in
a row is by design at most n − k − 1. Similarly, to locate an
error a traditional SEC code requires an n − k input AND gate
compared with a simple two input AND gate in the proposed
code. In practical implementations, this results in a significant
reduction of the encoding and decoding delays, as discussed
in the next section. The number of parity bits is, however,
larger than for traditional SEC codes. Table III illustrates for
different values of k the number of parity check bits required
in the proposed scheme. Those can be directly compared with
the values for the Hamming codes in Table I.

For the proposed SEC-DED codes (w = 3), a three-input
AND gate is needed to locate an error compared with the n−k

TABLE IV

Delay Estimates for the SEC Encoder and Decoder

Hamming Proposed SEC Reduction
k Enc Dec Enc Dec Enc Dec
8 0.27 0.42 0.23 0.37 14.8% 11.9%
16 0.33 0.49 0.28 0.40 15.2% 18.4%
32 0.39 0.56 0.30 0.45 23.1% 19.6%
64 0.45 0.65 0.35 0.48 22.2% 26.1%

input AND gate of traditional codes. The number of parity
check bits required is the same as existing SEC-DED codes for
small values of k, as can be seen comparing Tables I and III.
The number of ones in the parity check matrix is also the same
as in Hsiao SEC-DED codes [4] for small values of k (see
Table II). For larger values of k, reductions in the number of
ones in the parity check matrix are obtained at the expense of
additional parity check bits. One interesting observation is that
Hsiao codes for small values of k have a weight of three in all
the data bits. Therefore, the proposed optimized error location
scheme can be used to reduce the delay of the decoders when
we are only interested in correcting errors on the data bits.

One distinct feature of the proposed codes is that they
correct errors on the data bits only. This is similar to other
codes such as orthogonal Latin square (OLS) codes [10].
However, in OLS codes, each pair of data bits participates
in at most one shared parity check bit to ensure that majority
logic decoding can be used. This is different from the proposed
scheme in which the goal is to ensure that no data bit
participates in all the parity check bits, in which another data
bit participates. This is then used to simplify the location and
correction of an error, as described before. Another difference
is that OLS codes are commonly used when multiple error
correction capabilities are needed although SEC can also be
implemented. The main issues with SEC OLS codes are that
they are only implemented for a few block sizes and require
a large number of parity check bits.

Finally, it is worth mentioning that the parity check matrixes
of the proposed codes are similar to that of low density
parity check (LDPC) codes commonly used in communication
systems [11]. Nevertheless, since LDPC codes usually have
large block size, and must provide multiple error correction,
the encoding and decoding procedures are very different from
our proposed codes and require complex logic circuitry [11].

IV. Evaluation

To evaluate the benefits of the proposed codes in practical
implementations, the method has been used to design SEC
and SEC-DED codes for the values of k in Table II. Then,
the encoders and decoders have been implemented in HDL.
The designs have then been synthesized for the 45 nm OSU
FreePDK Standard Cell Library [12] using Synopsys Design
Compiler. The results of the proposed SEC codes are com-
pared with those of an SEC Hamming code. For SEC-DED,
the proposed codes are compared with the optimized SEC-
DED codes recently proposed in [6]. In all cases, the decoders
only correct errors in the data bits.
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TABLE V

Area Estimates for the SEC Encoder and Decoder

Hamming Proposed SEC Reduction
k Enc Dec Enc Dec Enc Dec
8 84.5 416.3 71.3 306.9 15.6% 26.3%

16 177.4 630.7 168.9 504.6 4.8% 20.0%
32 399.4 918.4 321.0 762.1 19.6% 17.0%
64 855.1 1982.8 685.6 1559.5 19.8% 21.4%

TABLE VI

Delay Estimates for the SEC-DED Encoder and Decoder

SEC-DED [6] Proposed SEC-DED Reduction
k Enc Dec Enc Dec Enc Dec
8 0.29 0.45 0.29 0.41 0.0% 8.9%

16 0.36 0.54 0.32 0.50 11.1% 7.4%
32 0.46 0.61 0.37 0.58 19.6% 4.9%
64 0.47 0.65 0.42 0.61 10.6% 6.2%

TABLE VII

Area Estimates for the SEC-DED Encoder and Decoder

SEC-DED [6] Proposed SEC-DED Reduction
k Enc Dec Enc Dec Enc Dec
8 143.1 415.7 113.6 355.8 20.6% 14.4%
16 247.3 694.6 227.1 563.7 8.2% 19.8%
32 464.4 1060.2 455.2 927.3 2.0% 12.5%
64 814.2 1904.8 905.7 1881.4 −11.2% 1.2%

The delay estimates (in ns) and area estimates (in μm2) for
both the encoder (Enc) and the decoder (Dec) SEC codes are
shown in Tables IV and V. For delay, significant reductions
over a Hamming code are achieved that in some cases exceed
25%, confirming the low delay of the proposed SEC codes. For
area, significant savings are also obtained in most cases. This
means that the use of the proposed codes may also be more
cost effective than Hamming codes, since the area savings
in the encoder and decoder can outweight the cost of the
additional flip-flops needed by our code.

For SEC-DED codes, the area and delay estimates are
presented in Tables VI and VII. It is important to note that
the delay results for the decoders are for the correction of
data bits. The delay for double error detection is larger in
most cases. However, double error detection will only be used
to signal an unrecoverable error, and therefore it only has to
be smaller than the clock cycle. The correction of data bits is
followed by the actual circuit logic, and therefore adds directly
to the circuit delay. Therefore, the impact on circuit delay is
due to the correction of the data bits, and it makes sense to
report it. The results also show delay reductions compared
with the SEC-DED codes proposed in [6] although smaller
than in the case of the SEC codes. The area is also reduced
in most cases. The impact on the delay of the proposed ECCs
when used in a circuit would be that of the encoder plus the
decoder. For SEC codes and k = 16 bits that is 0.75 ns while

for SEC-DED codes the value goes up to 0.82 ns. This means
that for a 250 MHz circuit approximately 20% of the clock
will be devoted to the ECC protection. For circuits that have
a higher clock rate, there will be parts of the circuit that have
significant timing margin, and therefore the ECCs can still
be used to protect those parts of the circuits while the faster
triplication with voting can be used on the critical paths.

V. Conclusion

In this paper, a method to construct low delay SEC and
SEC-DED codes was presented. The proposed method used
some additional parity bits to reduce the number of ones in the
rows and columns of the parity check matrix. This reduction
was then used to simplify the decoding logic to achieve
lower delay and area. The proposed method was evaluated
and compared with traditional SEC Hamming and SEC-DED
codes, showing significant reductions in both area and delay.
The proposed codes can be useful to protect registers in
circuits where the area and delay of the encoder and decoder
can be a more important issue than the number of parity bits.
The codes can also be useful to protect high-speed memories
or caches as they can minimize delay at the expense of a few
additional parity check bits.
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