
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract— This paper studies the problem of designing a low
complexity Concurrent Error Detection (CED) circuit for the
complex multiplication function commonly used in Digital Signal
Processing circuits. Five novel CED architectures are proposed
and their computational complexity, area and delay evaluated in
several circuit implementations. The most efficient architecture
proposed reduces the number of gates required by up to 30%
when compared with a conventional CED architecture based on
Dual Modular Redundancy. Compared to a Residue Code CED
scheme, the area of the proposed architectures is larger.
However, for some of the proposed CEDs delay is significantly
lower with reductions exceeding 30% in some configurations.

Index Terms— Complex multiplication, Concurrent Error
Detection, Fault Tolerance.

I. INTRODUCTION

N recent years, the numbers of soft errors occurring in
digital Integrated Circuits (ICs) has been increasing due to
reductions in feature sizes and supply voltages [1]. This has

prompted renewed research interest in developing methods for
detecting the occurrence of soft errors and single faults.
Concurrent Error Detection (CED) seeks to identify errors in
parallel with calculation of the circuit output [2]. Often CED
solutions employ Dual Modular Redundancy (DMR) whereby
two copies of the module to be protected are instantiated and a
comparator flags an error when the outputs differ. Typically,
DMR doubles the area of the module.

Digital Signal Processing (DSP) modules are common in
ICs for communications and multimedia [3]. In the case of
DSP, CED techniques often make use of the mathematical
properties of, or the relationships between, a module’s inputs
and outputs to provide efficient solutions [4]. A number of
publications have proposed efficient techniques for CED in
arithmetic modules. In [5], [6], [7], residue codes were used to
detect errors in real multiplications. The technique computes

Manuscript received March 28, 2012. This work was supported by the
Spanish Ministry of Science and Education under Grant AYA2009-13300-
C03. This paper is part of a collaboration in the framework of COST ICT
Action 1103 “Manufacturable and Dependable Multicore Architectures at
Nanoscale”.

S. Pontarelli is with University of Rome “Tor Vergata”, Via del
Politecnico 1 - 00133 Rome, Italy (phone +39-0672597344; email:
pontarelli@ing.uniroma2.it).

P. Reviriego and J.A. Maestro are with Universidad Antonio de Nebrija,
C/ Pirineos, 55 E-28040 Madrid, Spain (phone: +34-914521100; fax: +34-
914521110; email: {previrie, jmaestro}@nebrija.es).

C. J. Bleakley is with University College Dublin, Belfield, Dublin 4,
Ireland (phone: +353-17165353; fax: +353-12695396; email:
chris.bleakley@ucd.ie).

the residues, modulo m, of the multiplier inputs, multiplies
these residues, and calculates the residue modulo m, of the
result. The method compares this residue with the
conventional multiplication output, modulo m. The choice of
the value of m is critical [7], and depends on the
implementation of the adders and multipliers to protect and on
the required fault detection coverage. The use of higher values
of m increases the capability of the circuit to detect errors, but
also increases area and delay overhead.

Residue codes have been extended by combining the
approach with time redundancy [8]. Parity prediction has also
been studied as a method to protect multipliers [9]. The
implementation of fault tolerant multipliers has also been
studied in the context of security to prevent attacks [10].

Previous work focuses on multiplication of two real
numbers. However, in DSP systems, complex numbers are
commonly used. CED schemes optimized for complex
multiplication would be beneficial both in terms of circuit cost
(area) and circuit speed (delay). In this paper, we investigate
CED for complex multiplication, an operation common to
many DSP algorithms, based on arithmetic transformations.

Herein, we propose five efficient architectures for CED in
complex multiplication and assess their computational
complexity, circuit area and delay. To the authors’ knowledge,
the proposed architectures have not been described previously.

The following section provides background information on
implementation of complex multiplication in ICs. Section III
presents conventional and proposed schemes for CED in
complex multiplication. Section IV presents an evaluation of
the proposed techniques in terms of circuit area and delay for
various multiplier configurations. Finally, the conclusions of
the paper are summarized in section V.

II. BACKGROUND

Complex multiplication of two complex numbers, a+b•j and
c+d•j, is defined as:

y = (a•c - b•d) + (a•d + b•c) • j (1)

where j represents the square root of -1. This direct
implementation of the operation requires 4 real multiplications
and 2 additions, for a total of 6 arithmetic operations.

In DSP systems, a more efficient, indirect, implementation
is typically used [11]:

t1 = (a + b) • (c + d)
t2 = a•c (2)
t3 = b•d
y = (t2 - t3) + (t1- t2 - t3) • j

Low Complexity Concurrent Error Detection
for Complex Multiplication

Salvatore Pontarelli, Pedro Reviriego, Chris J. Bleakley and Juan Antonio Maestro

I

Digital Object Indentifier 10.1109/TC.2012.246 0018-9340/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

This indirect approach also known as Golub´s method only
requires 3 multiplications and 5 additions, for a total of 8
arithmetic operations. This is advantageous since, in
conventional ICs, multiplication is much more area expensive
and slower than addition.

The implementation of complex multiplication according to
equations (1) and (2) is illustrated in Figures 1 and 2. This
graphical representation will be useful in the following to
present the proposed Concurrent Error Detection checkers.
The convention for the minus boxes is that the output is equal
to the left input minus the right input. For each checker, the
number of subtractions is reported together with the number of
additions as they have a similar complexity.

a

x
c b

x
d

-

a

x
d b

x
c

+

yimagyreal

Figure 1. Direct implementation of complex multiplication.

a

+
b c

+
d

x

a

x
c b

x
d

-

yreal

+

-
yimag

Figure 2. Indirect implementation of complex multiplication.

III. CONCURRENT ERROR DETECTION FOR COMPLEX
MULTIPLICATIONS

The conventional CED solution for complex multiplication
is based on DMR. Using the direct implementation, this
approach gives a complexity of 8 real multiplications, 4 real
additions and 2 real comparisons. Using the indirect
implementation, in both the original and redundant modules,
leads to an overall complexity of 6 real multiplications, 10 real
additions and 2 real comparisons.

Herein, we propose five novel checkers. Checker 1, based
on noting that in the error-free case (see Eq. (1)):

yreal + yimag = a•c - b•d + a•d + b•c (3)

Hence, from Eq. (2), we can verify that:

yreal + yimag = t1 - 2•b•d (4)

Based on this, it would seem that y can be checked by
simply adding its real and imaginary parts and comparing the
result with t1 - 2•b•d. This would eliminate 1 multiplication in

the checking module since times -2 can be implemented
simply with a bit shift and bit flip. However, using this
approach, an error in t2 (=a•c) cannot be detected since it
affects yreal and yimag in equal and opposite ways, meaning that
their sum is unchanged. An additional check must be
introduced to detect errors in calculation of t2. This adds a
redundant multiplication giving a complexity of 6
multiplications, 9 additions and 2 comparisons. The scheme is
shown in Figure 3 where the elements of the checker are
shaded.

a

+
b c

+
d

x

a

+

b c

+
d

x

Compare
error

a

x
c b

x
d

-

yreal

+

-
yimag

+
b

x
d

-

a

x
c

Compare

error

1<<

Figure 3. CED using Checker 1.

Checker 2 is based on noting that in the indirect
implementation, calculation of yimag shares all of the steps
needed for calculation of yreal, except for subtraction of t3
(=b•d) from t2 (=a•c). Hence, the complex multiplication
results can be checked by verifying that:

yimag = a•d + b•c (5)
yreal = t2 – t3

The scheme reduces the number of multiplications to 5 and
has 7 additions and 2 comparisons. The checker is illustrated
in Figure 4.

a

+
b c

+
d

x

a

x
c b

x
d

-

yreal

+

-
yimag

a d b

x
c

+

x

Compare

error

-

Compare

error

Figure 4. CED using Checker 2.

Checker 3 is based on re-arranging Eq. (4) and verifying
that:

yreal + yimag + 2•b•d = t1 (6)

This checker is not efficient when used with the indirect
implementation since b•d is not available as part of the
original module and since t2 must be checked individually (as
before, errors in t2 cancel when yreal is added to yimag).

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

However, the checker can be efficiently implemented using
the direct implementation for the original module. This
approach has the advantage that yreal and yimag are calculated
independently and so a single error cannot affect both values.
In addition, b•d is already available in the original module and
does not need to be calculated as part of the checker. The
resulting architecture is shown in Figure 5. The complexity of
this approach is 5 multiplications, 6 additions and 1
comparison.

a

x
c b

x
d

-

a

x
d b

x
c

+

yimagyreal

+

a

+
b c

+
d

x

Compare
error

+

1<<

Figure 5. CED using Checker 3.
Checker 4 is based on the indirect implementation and

checks the following equality:

 yimag - (a•c + b•d) = (a – b)•(d - c) (7)

In this case the subtraction (a•c)-(b•d) has to be duplicated,
as was the case in Checker 2, as it is not covered in Eq. (7).
This checker reduces the number of real multiplications
required to four. The checker is illustrated in Figure 6.

a

+
b c

+
d

x

a

x
c b

x
d

-

yreal

+

-
yimag

a b d

-
c

x

-

Compare

error

-

Compare

error

-

Figure 6. CED using Checker 4.

Finally, Checker 5 is based on an implementation of
complex multiplication that is different from those presented
in section II. The checker is shown in Figure 7. It computes
the real and imaginary part as:

yreal = a•c - b•d
yimag = [(a + b)•(c +d) - (a - b)•(c- d)]/2 (8)

Then CED can be implemented by checking:

yreal + yimag = (a + b)•(c + d) - 2•(b•d) (9)

which requires only 4 multiplications. This method can be
seen as an extension of the Karatsuba formula to detect errors
in finite field multipliers presented in [12].
Some calculations, for example (a + b)•(c + d) are used in
both sides of the checker. However they have different
multiplication weights. For example, the output of (a + b)•(c
+ d) propagates to the Left Hand Side (LHS) of Eq. (9)
divided by two and to the Right Hand Side (RHS) directly.
Therefore, an error in (a + b)•(c + d) will cause a mismatch
between the LHS and RHS of Eq. (9) and an error will be
detected. For example, consider the input values: a=5; b=3;
c=8 and d=9. We obtain:

yreal = 5•8 - 3•9 = 13
yimag = [(5+3)•(8+9)-(5-3)•(8-9)]/2=[8•17+2]/2 = 69
LHS = yreal+yimag = 13+69 = 82
RHS = (a+b)•(c+d)-2•(b•d) = 136-2•3•9 = 136-54 = 82

If an error occurs in (a+b) changing its value e.g. from 8 to 9
(for erroneous values we use red, bold font) the computation
becomes:

yreal = 5•8-3•9 =13
yimag = [(5+3)•(8+9)-(5-3)•(8-9)]/2=[9•17+2]/2 = 77
LHS = 13+77 = 90
RHS = 9•17-2•3•9 = 153-54 = 99

Hence, the values on the LHS and RHS differ, and the error
is detected.

a

+
b c

+
d

x

a

x
c b

x
d

-
yreal -

yimag

a b c

-
d

x

-

Compare

error

+

>>1 -
1<<

Figure 7. CED using Checker 5.

The complexity and delay of the CED schemes are
summarized in Tables I and II in terms of the number of
arithmetic operations. As can be seen, the Checker 5 has the
lowest computational complexity. It is notable that the highest
complexity multiplier structure considered leads to the
simplest checker and the lowest complexity overall. For the
direct implementation, the checker with the lowest complexity
is Checker 3. For the indirect implementation, Checker 4 has
the lowest cost, with the same number of multiplications as
Checker 5. The checker based on DMR of the direct
implementation is the fastest solution. All of the proposed

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

schemes incur in some delay overhead. In the next section
circuit implementations of the checkers are presented to
evaluate their circuit area and circuit delay.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE MULTIPLIERS WITH CED.

Architecture Real
Multiplications

Real Additions Comparisons

Direct DMR 8 4 2
Indirect DMR 6 10 2

Checker 1 6 9 2
Checker 2 5 7 2
Checker 3 5 6 1
Checker 4 4 9 2
Checker 5 4 8 1

TABLE II
DELAY OF THE MULTIPLIERS WITH CED.

Architecture Real
Multiplications

Real Additions Comparisons

Direct DMR 1 1 1
Indirect DMR 1 2 1

Checker 1 1 3 1
Checker 2 1 2 1
Checker 3 1 3 1
Checker 4 1 3 1
Checker 5 1 3 1

IV. EVALUATION

All five proposed checkers were proven analytically to
provide 100% accurate fault detection when implemented with
full precision with respect to the input data bit-width.

To evaluate the circuit complexity and delay of checkers,
they were implemented in VHDL and synthesized for the
45nm OSU FreePDK Standard Cell library [13] using
Synopsys Design Compiler. The synthesis was done using
independent modules for the original multiplication and the
checkers so that the protection logic was not removed by
Design Compiler during the optimization process.

In a first set of implementations, full precision checking
was used for various input bit-widths. No truncation or
rounding is done such that the outputs have approximately
twice the number of bits of the inputs. In a second set of
implementations, reduced precision checking is used. In all
cases, two options for synthesis were considered: area
optimization and speed optimization. The results for the first
option provide insight into the minimum circuit area and the
second provides insight into the minimum delay.

To compare with other error detection techniques, Dual
Modular Redundancy (DMR) and Concurrent Error Detection
using residue codes were implemented. DMR was considered
for both the direct and the indirect implementations and also
for reduced precision checking. For residue codes, the scheme
was applied by performing the modulo operation at the inputs
and outputs of the complex multiplication such that both
adders and multipliers are protected. Modulo 7 was used to

obtain good error coverage1 [5]. Concurrent error detection
using residue codes does not allow for truncation and therefore
these schemes were not considered for reduced precision
checking. The results for the unprotected implementations are
also reported for completeness.

The circuit area in terms of the number of equivalent
NAND2 gates for the full precision implementations is
reported in Table III. Comparing the direct and indirect
unprotected multipliers it can be observed that the area savings
of the indirect implementation over the direct one are small.
This is due to the optimizations performed by Synopsys
Design Compiler, which works at lower abstraction levels,
(use of carry-save representation, high radix Booth recoding,
conversion from Sum of Product to Product of Sum, etc.) [14].
These optimizations can produce unexpected results with
unconventional arithmetic such as that in Eq. (2). This has
been observed previously in floating-point implementations of
complex multipliers where indirect implementations had no
advantage over the direct ones [15]. In our case, the indirect
implementation gives better results but with only small
savings over the direct implementation.

It can be observed that the DMR versions require more than
two times the number of gates of the unprotected
implementation as expected. Similarly to the unprotected
version, there are little benefits in using the indirect DMR with
respect to the direct DMR. Checker 5 has the least area with
reductions of up to 30% compared with the most efficient
DMR checker. The other checkers also provide significant
reductions in the number of gates compared to DMR. The
Residue CED scheme provides similar area to that of Checker
5 when used with the direct implementation and significantly
less when used with the indirect implementation.

TABLE III
AREA OF THE MULIPLIERS WITH AND WITHOUT CED (NAND2 EQUIVALENT

GATES). AREA OPTIMIZED SYNTHESIS.
Architecture Area

8 bit
input

12 bit
input

16 bit
input

Direct unprotected 1,636 3,313 5,553

Indirect unprotected 1,599 2,993 5,152

Direct DMR 3,888 6,815 11,587

Indirect DMR 3,796 6,548 10,714

Residue Direct 2,870 5,336 7,008

Residue Indirect 2,412 4,352 6,270

Checker 1 3,303 5,612 9,271

Checker 2 2,900 5,928 8,437

Checker 3 2,876 5,903 8,305

Checker 4 3,003 5,858 8,034

Checker 5 2,711 5,434 7,505

1Synthesis was performed by configuring Synopsys Design Compiler to
implement parallel prefix structures for the adders and multipliers. For these
structures, modulo 7 may not be sufficient to achieve the desired error
detection coverage depending on the application. In those cases larger values
of m would be required with the associated area overhead.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

The delay results, in nanoseconds for the full precision
implementations are reported in Table IV. The direct DMR
implementation provides the lowest delay with an overhead of
up to 8% over the unprotected version. Checker 5 has the
highest delay with an overhead of up to 66% over the direct
DMR implementation and up to 76% over the unprotected
version. Other checkers, such as Checker 2 have only a 15%
delay overhead over the direct DMR implementation and a
21% overhead over the unprotected version in the worst case.
The Residue CED schemes incur delays that are significantly
larger than that of Checker 2 but less than that of Checker 5.

TABLE IV
DELAY OF THE MULTIPLIERS WITH AND WITHOUT CED (NANOSECONDS).

DELAY OPTIMIZED SYNTHESIS.
Architecture Delay

8 bit
input

12 bit
input

16 bit
input

Direct unprotected 1.02 1.16 1.26

Indirect unprotected 1.19 1.40 1.48

Direct DMR 1.10 1.22 1.31

Indirect DMR 1.30 1.50 1.54

Residue Direct 1.40 1.58 1.79

Residue Indirect 1.53 1.76 1.97

Checker 1 1.41 1.59 1.70

Checker 2 1.23 1.40 1.48

Checker 3 1.29 1.45 1.55

Checker 4 1.43 1.63 1.71

Checker 5 1.80 2.03 2.17

In many DSP systems, it is sufficient to detect errors that
have a large magnitude. This has led to the concept of reduced
precision redundancy [16]. In our case, reduced precision can
be used in the elements that are needed for the CED but not
for the main complex multiplication operation to reduce area.
These elements are shaded in Figures 3-7. Reduced precision
cannot be used with the Residue checkers. Therefore those
schemes are not included in the comparison.

To evaluate the effects of reduced precision on the area and
delay, implementations using 16 bits inputs for the main
operation and 8 bits inputs for the checker components were
evaluated. This ensures that large errors that affect the most
significant bits will be detected. The magnitude of the smallest
error that will be detected can be calculated by analyzing the
quantization in the different checkers. Since the objective is
only to study how reduced precision affects the
implementation complexity and speed of the different
checkers, a full analysis is not included in the paper. However,
assuming that the inputs are normalized to 0.5 such that
multiplications do not increase the quantization error, the
largest undetected error can be bounded. As truncation is only
done at the inputs of the checkers, in the worst case the
truncation errors add to give a value of the number of
truncated inputs times the maximum truncation error. If that
value is used as threshold to detect errors then the maximum

undetected error will in the worst case be twice that value (as
in that case the error cannot be masked by quantization
effects).

The areas of the reduced precision checker implementations
are reported in Table V. Checker 2 provides the lowest area
with a reduction of 11% compared to the smallest DMR
checker. The reduced precision Checker 2 architecture
provides a 17% area saving relative to the smallest full
precision architecture (Checker 5). Checker 5 shows the least
area saving since all multiplication operations are part of the
main complex multiplication operation, as shown in Fig. 7,
and must therefore be full precision.

TABLE V
AREA OF THE MULTIPLIERS WITH REDUCED PRECISION CED (NAND2

EQUIVALENT GATES). AREA OPTIMIZED SYNTHESIS.

Architecture Area
Direct DMR 7,279

Indirect DMR 6,991
Checker 1 6,574
Checker 2 6,192
Checker 3 6,734
Checker 4 6,241
Checker 5 7,272

The delay results in nanoseconds for the reduced precision
implementations are reported in Table VI. In this case, the
delay for the DMR implementation increases slightly as the
comparison is no longer a simple equality check. Checker 2
provides the lowest delay overhead, 13%, similar to that of a
full precision implementation.

In summary, we can conclude that the Residue scheme
using the indirect implementation should be used to minimize
the circuit complexity (area) when delay is not an issue and
full precision checking is required. Minimum delay is
provided by the Direct DMR architecture. However, if near-
minimum delay is acceptable, Checker 2 should be used to
reduce circuit complexity. If reduced precision checking is
acceptable for the application, Checker 2 provides lowest
circuit area and is smaller than the smallest full precision
alternative.

TABLE VI
DELAY OF THE MULTIPLIERS WITH REDUCED PRECISION CED

(NANOSECONDS). DELAY OPTIMIZED SYNTHESIS.

Architecture Delay
Direct DMR 1.34

Indirect DMR 1.51
Checker 1 1.85
Checker 2 1.52
Checker 3 1.64
Checker 4 1.84
Checker 5 1.78

V. CONCLUSIONS

This paper proposed five new Concurrent Error Detection
architectures for complex multiplication. The benefits in terms
of circuit complexity reductions were evaluated for various
configurations showing reductions of up to 30% in the area
compared to DMR. Compared to a Residue CED scheme, the

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

area is greater but the delay for some of the proposed
architectures is significantly lower showing reductions of over
30% in some configurations. The use of reduced precision for
the CED elements was also considered showing that it results
in a different CED architecture providing the best results. The
proposed solutions provide a wide set of efficient building
blocks to implement CED in DSP systems.

REFERENCES

[1] R. Baumman “Soft errors in advanced computer systems” IEEE Design
and Test of Computers, vol. 22, no. 3, pp. 258 – 266, 2005.

[2] M. Nicolaidis, “Design for soft error mitigation”, IEEE Transactions
Device and Materials Reliability vol. 5, no. 3, pp. 405–418, Sept. 2005.

[3] Oppenheim A. V. and Schafer R., Discrete Time Signal Processing,
Prentice Hall, 1999.

[4] A. Reddy and P. Banarjee “Algorithm-based fault detection for signal
processing applications”, IEEE Transactions on Computers, vol. 39, no.
10, pp. 1304-1308, Oct. 1990.

[5] U. Sparmann and S.M. Reddy “On the effectiveness of residue code
checking for parallel two's complement multipliers”, 24th Int. Symp. On
Fault-Tolerant Computing (FTCS-24), pp. 219-228, Jun. 1994.

[6] T.J. Brosnan and N.R Strader. “Modular error detection for bit-serial
multiplication”, IEEE Transactions on Computers, vol. 37, no. 9, pp.
1043-1052, Sept. 1988.

[7] I. Alzaher-Noufal and M. Nicolaidis “A CAD Framework for
Generating Self-Checking Multipliers Based on Residue Codes” Design
and Test in Europe (DATE), pp. 122-129, March 1999.

[8] R. Forsati, K. Faez, F. Moradi, A. Rahbar, “A Fault Tolerant Method for
Residue Arithmetic Circuits”, in proc. of IEEE International Conference
on Information Management and Engineering, (ICIME'09), 2009, pp.
59-63.

[9] Z. Wang, M. Karpovsky, B. Sunar and A. Joshi, “Design of Reliable and
Secure Multipliers by Multilinear Arithmetic Codes”, Lecture Notes in
Computer Science, 2009, vol. 5927, pp. 47-62, 2009.

[10] M. Hunger and D. Marienfeld “New self-checking booth multipliers”,
International Journal of Applied Mathematics and Computer Science,
vol. 18, No. 3, pp. 319–328, 2008.

[11] J. W. Hartwell, “A Procedure for Implementing the Fast Fourier
Transform on Small Computers”, IBM Journal of Research and
Development, vol. 15, pp. 355-363, 1971.

[12] S. Pontarelli, A. Salsano, “On the use of Karatsuba formula to detect
errors in GF((2^n)^2) multipliers”, IET Circuits, Devices & Systems,
vol. 6 no. 3, pp 152-158, 2012

[13] J. E. Stine et al., “FreePDK: An open-source variation-aware design kit,”
in Proc. IEEE Int. Conf. Microelectronic Systems Education, (MSE’07),
Jun. 2007, pp. 173–174.

[14] R. Zimmermann, "Datapath Synthesis for Standard-Cell Design", in
Proc. of the 9th IEEE Symposium on Computer Arithmetic (ARITH)
2009, pp. 1207--211.

[15] E. E. Swartzlander and H. H. Saleh, "Floating-point implementation of
complex multiplication", in Proc. of the IEEE Forty-Third Asilomar
Conference on Signals, Systems and Computers, 2009, pp. 926-929.

[16] B. Shim and N. Shanbhag, “Energy-efficient soft error-tolerant digital
signal processing,” IEEE Transactions on VLSI Systems, vol. 14 no. 4,
pp. 336–348, 2006.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

