
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract— This paper studies the problem of designing a low 
complexity Concurrent Error Detection (CED) circuit for the 
complex multiplication function commonly used in Digital Signal 
Processing circuits. Five novel CED architectures are proposed 
and their computational complexity, area and delay evaluated in 
several circuit implementations. The most efficient architecture
proposed reduces the number of gates required by up to 30%
when compared with a conventional CED architecture based on 
Dual Modular Redundancy. Compared to a Residue Code CED 
scheme, the area of the proposed architectures is larger.
However, for some of the proposed CEDs delay is significantly 
lower with reductions exceeding 30% in some configurations.

Index Terms— Complex multiplication, Concurrent Error 
Detection, Fault Tolerance. 

I. INTRODUCTION

N recent years, the numbers of soft errors occurring in 
digital Integrated Circuits (ICs) has been increasing due to 
reductions in feature sizes and supply voltages [1]. This has 

prompted renewed research interest in developing methods for 
detecting the occurrence of soft errors and single faults.
Concurrent Error Detection (CED) seeks to identify errors in 
parallel with calculation of the circuit output [2]. Often CED 
solutions employ Dual Modular Redundancy (DMR) whereby 
two copies of the module to be protected are instantiated and a 
comparator flags an error when the outputs differ. Typically, 
DMR doubles the area of the module.

Digital Signal Processing (DSP) modules are common in 
ICs for communications and multimedia [3]. In the case of 
DSP, CED techniques often make use of the mathematical 
properties of, or the relationships between, a module’s inputs 
and outputs to provide efficient solutions [4]. A number of 
publications have proposed efficient techniques for CED in 
arithmetic modules. In [5], [6], [7], residue codes were used to 
detect errors in real multiplications. The technique computes 
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the residues, modulo m, of the multiplier inputs, multiplies 
these residues, and calculates the residue modulo m, of the 
result. The method compares this residue with the 
conventional multiplication output, modulo m. The choice of 
the value of m is critical [7], and depends on the 
implementation of the adders and multipliers to protect and on 
the required fault detection coverage. The use of higher values 
of m increases the capability of the circuit to detect errors, but 
also increases area and delay overhead. 

Residue codes have been extended by combining the 
approach with time redundancy [8]. Parity prediction has also 
been studied as a method to protect multipliers [9]. The 
implementation of fault tolerant multipliers has also been 
studied in the context of security to prevent attacks [10].

Previous work focuses on multiplication of two real 
numbers. However, in DSP systems, complex numbers are 
commonly used. CED schemes optimized for complex 
multiplication would be beneficial both in terms of circuit cost 
(area) and circuit speed (delay). In this paper, we investigate 
CED for complex multiplication, an operation common to 
many DSP algorithms, based on arithmetic transformations.  

Herein, we propose five efficient architectures for CED in 
complex multiplication and assess their computational 
complexity, circuit area and delay. To the authors’ knowledge, 
the proposed architectures have not been described previously. 

The following section provides background information on 
implementation of complex multiplication in ICs. Section III 
presents conventional and proposed schemes for CED in 
complex multiplication. Section IV presents an evaluation of 
the proposed techniques in terms of circuit area and delay for 
various multiplier configurations. Finally, the conclusions of 
the paper are summarized in section V.  

II. BACKGROUND

Complex multiplication of two complex numbers, a+b•j and 
c+d•j, is defined as: 

  

y = (a•c - b•d) + (a•d + b•c) • j          (1)  

where j represents the square root of -1. This direct 
implementation of the operation requires 4 real multiplications 
and 2 additions, for a total of 6 arithmetic operations. 

In DSP systems, a more efficient, indirect, implementation 
is typically used [11]: 

t1 = (a + b) • (c + d)       
t2 = a•c                    (2) 
t3 = b•d
y = (t2 - t3) + (t1- t2 - t3) • j 
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This indirect approach also known as Golub´s method only 
requires 3 multiplications and 5 additions, for a total of 8 
arithmetic operations. This is advantageous since, in 
conventional ICs, multiplication is much more area expensive 
and slower than addition.  

The implementation of complex multiplication according to 
equations (1) and (2) is illustrated in Figures 1 and 2. This 
graphical representation will be useful in the following to 
present the proposed Concurrent Error Detection checkers. 
The convention for the minus boxes is that the output is equal 
to the left input minus the right input. For each checker, the 
number of subtractions is reported together with the number of 
additions as they have a similar complexity. 
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Figure 1. Direct implementation of complex multiplication. 
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Figure 2. Indirect implementation of complex multiplication. 

III. CONCURRENT ERROR DETECTION FOR COMPLEX 
MULTIPLICATIONS 

The conventional CED solution for complex multiplication 
is based on DMR. Using the direct implementation, this 
approach gives a complexity of 8 real multiplications, 4 real 
additions and 2 real comparisons. Using the indirect 
implementation, in both the original and redundant modules, 
leads to an overall complexity of 6 real multiplications, 10 real 
additions and 2 real comparisons. 

Herein, we propose five novel checkers. Checker 1, based 
on noting that in the error-free case (see Eq. (1)): 

yreal + yimag = a•c - b•d + a•d + b•c (3)

Hence, from Eq. (2), we can verify that: 
  

yreal + yimag = t1 - 2•b•d (4)

Based on this, it would seem that y can be checked by 
simply adding its real and imaginary parts and comparing the 
result with t1 - 2•b•d. This would eliminate 1 multiplication in 

the checking module since times -2 can be implemented 
simply with a bit shift and bit flip. However, using this 
approach, an error in t2 (=a•c) cannot be detected since it 
affects yreal and yimag in equal and opposite ways, meaning that 
their sum is unchanged. An additional check must be 
introduced to detect errors in calculation of t2. This adds a 
redundant multiplication giving a complexity of 6 
multiplications, 9 additions and 2 comparisons. The scheme is 
shown in Figure 3 where the elements of the checker are 
shaded.
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Figure 3. CED using Checker 1. 

Checker 2 is based on noting that in the indirect 
implementation, calculation of yimag shares all of the steps 
needed for calculation of yreal, except for subtraction of t3
(=b•d) from t2 (=a•c). Hence, the complex multiplication 
results can be checked by verifying that: 

yimag = a•d + b•c (5)
yreal = t2 – t3

The scheme reduces the number of multiplications to 5 and 
has 7 additions and 2 comparisons. The checker is illustrated 
in Figure 4. 
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Figure 4. CED using Checker 2. 

Checker 3 is based on re-arranging Eq. (4) and verifying 
that: 

yreal + yimag + 2•b•d = t1 (6)

This checker is not efficient when used with the indirect 
implementation since b•d is not available as part of the 
original module and since t2 must be checked individually (as 
before, errors in t2 cancel when yreal is added to yimag). 
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However, the checker can be efficiently implemented using 
the direct implementation for the original module. This 
approach has the advantage that yreal and yimag are calculated 
independently and so a single error cannot affect both values. 
In addition, b•d is already available in the original module and 
does not need to be calculated as part of the checker. The 
resulting architecture is shown in Figure 5. The complexity of 
this approach is 5 multiplications, 6 additions and 1 
comparison.
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Figure 5. CED using Checker 3. 
Checker 4 is based on the indirect implementation and 

checks the following equality: 

 yimag - (a•c + b•d) = (a – b)•(d - c) (7)
  

In this case the subtraction (a•c)-(b•d) has to be duplicated, 
as was the case in Checker 2, as it is not covered in Eq. (7). 
This checker reduces the number of real multiplications 
required to four. The checker is illustrated in Figure 6. 

a

+
b c

+
d

x

a

x
c b

x
d

-

yreal

+

-
yimag

a b d

-
c

x

-

Compare

error

-

Compare

error

-

Figure 6. CED using Checker 4. 

Finally, Checker 5 is based on an implementation of 
complex multiplication that is different from those presented 
in section II. The checker is shown in Figure 7. It computes 
the real and imaginary part as:  

yreal = a•c - b•d
yimag = [(a + b)•(c +d) - (a - b)•(c- d)]/2 (8)

Then CED can be implemented by checking:  

yreal + yimag = (a + b)•(c + d) - 2•(b•d) (9)

which requires only 4 multiplications. This method can be 
seen as an extension of the Karatsuba formula to detect errors 
in finite field multipliers presented in [12]. 
Some calculations, for example (a + b)•(c + d) are used in 
both sides of the checker. However they have different 
multiplication weights. For example, the output of (a + b)•(c
+ d) propagates to the Left Hand Side (LHS) of Eq. (9) 
divided by two and to the Right Hand Side (RHS) directly. 
Therefore, an error in (a + b)•(c + d) will cause a mismatch 
between the LHS and RHS of Eq. (9) and an error will be 
detected. For example, consider the input values: a=5; b=3;
c=8 and d=9. We obtain:

yreal = 5•8 - 3•9 = 13
yimag = [(5+3)•(8+9)-(5-3)•(8-9)]/2=[8•17+2]/2 = 69
LHS = yreal+yimag  = 13+69 = 82
RHS = (a+b)•(c+d)-2•(b•d) = 136-2•3•9 = 136-54 = 82

If an error occurs in (a+b) changing its value e.g. from 8 to 9
(for erroneous values we use red, bold font) the computation 
becomes:

yreal = 5•8-3•9 =13
yimag = [(5+3)•(8+9)-(5-3)•(8-9)]/2=[9•17+2]/2 = 77
LHS = 13+77 = 90
RHS = 9•17-2•3•9 = 153-54 = 99

Hence, the values on the LHS and RHS differ, and the error 
is detected. 
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Figure 7. CED using Checker 5. 

The complexity and delay of the CED schemes are 
summarized in Tables I and II in terms of the number of 
arithmetic operations. As can be seen, the Checker 5 has the 
lowest computational complexity. It is notable that the highest 
complexity multiplier structure considered leads to the 
simplest checker and the lowest complexity overall. For the 
direct implementation, the checker with the lowest complexity 
is Checker 3. For the indirect implementation, Checker 4 has 
the lowest cost, with the same number of multiplications as 
Checker 5. The checker based on DMR of the direct 
implementation is the fastest solution. All of the proposed 
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schemes incur in some delay overhead. In the next section 
circuit implementations of the checkers are presented to 
evaluate their circuit area and circuit delay. 

TABLE  I 
COMPUTATIONAL COMPLEXITY OF THE MULTIPLIERS WITH CED. 

Architecture Real 
Multiplications

Real Additions Comparisons

Direct DMR 8 4 2
Indirect DMR 6 10 2

Checker 1 6 9 2
Checker 2 5 7 2
Checker 3 5 6 1
Checker 4 4 9 2
Checker 5 4 8 1

TABLE  II 
DELAY OF THE MULTIPLIERS WITH CED.

Architecture Real 
Multiplications

Real Additions Comparisons

Direct DMR 1 1 1
Indirect DMR 1 2 1

Checker 1 1 3 1
Checker 2 1 2 1
Checker 3 1 3 1
Checker 4 1 3 1
Checker 5 1 3 1

IV. EVALUATION

All five proposed checkers were proven analytically to 
provide 100% accurate fault detection when implemented with 
full precision with respect to the input data bit-width. 

To evaluate the circuit complexity and delay of checkers, 
they were implemented in VHDL and synthesized for the 
45nm OSU FreePDK Standard Cell library [13] using 
Synopsys Design Compiler. The synthesis was done using 
independent modules for the original multiplication and the 
checkers so that the protection logic was not removed by 
Design Compiler during the optimization process.

In a first set of implementations, full precision checking 
was used for various input bit-widths. No truncation or 
rounding is done such that the outputs have approximately 
twice the number of bits of the inputs. In a second set of 
implementations, reduced precision checking is used. In all 
cases, two options for synthesis were considered: area 
optimization and speed optimization. The results for the first 
option provide insight into the minimum circuit area and the 
second provides insight into the minimum delay.   

To compare with other error detection techniques, Dual 
Modular Redundancy (DMR) and Concurrent Error Detection 
using residue codes were implemented. DMR was considered 
for both the direct and the indirect implementations and also 
for reduced precision checking. For residue codes, the scheme 
was applied by performing the modulo operation at the inputs 
and outputs of the complex multiplication such that both 
adders and multipliers are protected. Modulo 7 was used to 

obtain good error coverage1 [5]. Concurrent error detection 
using residue codes does not allow for truncation and therefore 
these schemes were not considered for reduced precision 
checking. The results for the unprotected implementations are 
also reported for completeness. 

The circuit area in terms of the number of equivalent 
NAND2 gates for the full precision implementations is
reported in Table III. Comparing the direct and indirect 
unprotected multipliers it can be observed that the area savings 
of the indirect implementation over the direct one are small. 
This is due to the optimizations performed by Synopsys 
Design Compiler, which works at lower abstraction levels, 
(use of carry-save representation, high radix Booth recoding, 
conversion from Sum of Product to Product of Sum, etc.) [14].
These optimizations can produce unexpected results with 
unconventional arithmetic such as that in Eq. (2). This has 
been observed previously in floating-point implementations of 
complex multipliers where indirect implementations had no 
advantage over the direct ones [15]. In our case, the indirect 
implementation gives better results but with only small 
savings over the direct implementation.   

It can be observed that the DMR versions require more than 
two times the number of gates of the unprotected 
implementation as expected. Similarly to the unprotected 
version, there are little benefits in using the indirect DMR with 
respect to the direct DMR. Checker 5 has the least area with 
reductions of up to 30% compared with the most efficient 
DMR checker. The other checkers also provide significant 
reductions in the number of gates compared to DMR. The 
Residue CED scheme provides similar area to that of Checker 
5 when used with the direct implementation and significantly 
less when used with the indirect implementation. 

TABLE  III
AREA OF THE MULIPLIERS WITH AND WITHOUT CED (NAND2 EQUIVALENT 

GATES). AREA OPTIMIZED SYNTHESIS.
Architecture Area

8 bit 
input

12 bit 
input

16 bit 
input

Direct unprotected 1,636 3,313 5,553

Indirect unprotected 1,599 2,993 5,152

Direct DMR 3,888 6,815 11,587

Indirect DMR 3,796 6,548 10,714

Residue Direct 2,870 5,336 7,008

Residue Indirect 2,412 4,352 6,270

Checker 1 3,303 5,612 9,271

Checker 2 2,900 5,928  8,437 

Checker 3 2,876 5,903 8,305

Checker 4 3,003 5,858 8,034

Checker 5 2,711 5,434 7,505

1Synthesis was performed by configuring Synopsys Design Compiler to 
implement parallel prefix structures for the adders and multipliers. For these 
structures, modulo 7 may not be sufficient to achieve the desired error 
detection coverage depending on the application.  In those cases larger values 
of m would be required with the associated area overhead.
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The delay results, in nanoseconds for the full precision 
implementations are reported in Table IV. The direct DMR 
implementation provides the lowest delay with an overhead of 
up to 8% over the unprotected version. Checker 5 has the 
highest delay with an overhead of up to 66% over the direct 
DMR implementation and up to 76% over the unprotected 
version. Other checkers, such as Checker 2 have only a 15%
delay overhead over the direct DMR implementation and a 
21% overhead over the unprotected version in the worst case. 
The Residue CED schemes incur delays that are significantly 
larger than that of Checker 2 but less than that of Checker 5. 

TABLE  IV 
DELAY OF THE MULTIPLIERS WITH AND WITHOUT CED (NANOSECONDS).

DELAY OPTIMIZED SYNTHESIS. 
Architecture Delay

8 bit 
input

12 bit 
input

16 bit 
input

Direct unprotected 1.02 1.16 1.26

Indirect unprotected 1.19 1.40 1.48

Direct DMR 1.10 1.22 1.31

Indirect DMR 1.30 1.50 1.54

Residue Direct 1.40 1.58 1.79

Residue Indirect 1.53 1.76 1.97

Checker 1 1.41 1.59 1.70

Checker 2 1.23 1.40 1.48 

Checker 3 1.29 1.45 1.55

Checker 4 1.43 1.63 1.71

Checker 5 1.80 2.03 2.17

In many DSP systems, it is sufficient to detect errors that 
have a large magnitude. This has led to the concept of reduced 
precision redundancy [16]. In our case, reduced precision can 
be used in the elements that are needed for the CED but not 
for the main complex multiplication operation to reduce area. 
These elements are shaded in Figures 3-7. Reduced precision 
cannot be used with the Residue checkers. Therefore those 
schemes are not included in the comparison. 

To evaluate the effects of reduced precision on the area and 
delay, implementations using 16 bits inputs for the main 
operation and 8 bits inputs for the checker components were 
evaluated. This ensures that large errors that affect the most 
significant bits will be detected. The magnitude of the smallest 
error that will be detected can be calculated by analyzing the 
quantization in the different checkers. Since the objective is 
only to study how reduced precision affects the 
implementation complexity and speed of the different 
checkers, a full analysis is not included in the paper. However, 
assuming that the inputs are normalized to 0.5 such that 
multiplications do not increase the quantization error, the 
largest undetected error can be bounded. As truncation is only 
done at the inputs of the checkers, in the worst case the 
truncation errors add to give a value of the number of 
truncated inputs times the maximum truncation error. If that 
value is used as threshold to detect errors then the maximum 

undetected error will in the worst case be twice that value (as 
in that case the error cannot be masked by quantization 
effects).   

The areas of the reduced precision checker implementations 
are reported in Table V. Checker 2 provides the lowest area 
with a reduction of 11% compared to the smallest DMR 
checker. The reduced precision Checker 2 architecture 
provides a 17% area saving relative to the smallest full 
precision architecture (Checker 5). Checker 5 shows the least 
area saving since all multiplication operations are part of the 
main complex multiplication operation, as shown in Fig. 7, 
and must therefore be full precision.  

TABLE V
AREA OF THE MULTIPLIERS WITH REDUCED PRECISION CED (NAND2

EQUIVALENT GATES). AREA OPTIMIZED SYNTHESIS. 

Architecture Area
Direct DMR 7,279

Indirect DMR 6,991
Checker 1 6,574
Checker 2 6,192
Checker 3 6,734
Checker 4 6,241
Checker 5 7,272

The delay results in nanoseconds for the reduced precision 
implementations are reported in Table VI. In this case, the 
delay for the DMR implementation increases slightly as the 
comparison is no longer a simple equality check.  Checker 2 
provides the lowest delay overhead, 13%, similar to that of a 
full precision implementation. 

In summary, we can conclude that the Residue scheme 
using the indirect implementation should be used to minimize 
the circuit complexity (area) when delay is not an issue and 
full precision checking is required. Minimum delay is 
provided by the Direct DMR architecture. However, if near-
minimum delay is acceptable, Checker 2 should be used to 
reduce circuit complexity. If reduced precision checking is 
acceptable for the application, Checker 2 provides lowest 
circuit area and is smaller than the smallest full precision 
alternative. 

TABLE  VI 
DELAY OF THE MULTIPLIERS WITH REDUCED PRECISION CED

(NANOSECONDS). DELAY OPTIMIZED SYNTHESIS. 

Architecture Delay
Direct DMR 1.34

Indirect DMR 1.51
Checker 1 1.85
Checker 2 1.52
Checker 3 1.64
Checker 4 1.84
Checker 5 1.78

V. CONCLUSIONS

This paper proposed five new Concurrent Error Detection 
architectures for complex multiplication. The benefits in terms 
of circuit complexity reductions were evaluated for various 
configurations showing reductions of up to 30% in the area 
compared to DMR. Compared to a Residue CED scheme, the 
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area is greater but the delay for some of the proposed 
architectures is significantly lower showing reductions of over 
30% in some configurations. The use of reduced precision for 
the CED elements was also considered showing that it results 
in a different CED architecture providing the best results. The 
proposed solutions provide a wide set of efficient building 
blocks to implement CED in DSP systems. 
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