
Error Detection and Correction in Content
Addressable Memories by Using Bloom Filters

Salvatore Pontarelli and Marco Ottavi, Senior Member, IEEE

Abstract—A content addressable memory (CAM) is an SRAM-based memory that can be accessed in parallel to search for a given

search word, providing as a result the address of the matching data. Like conventional memories, a CAM can be affected by the

occurrence of single event upsets (SEUs) that can alter the content of one of more memory cells causing different effects such as

pseudo-HIT or pseudo-MISS events. It is well known that, because of the parallel search performed by a CAM during the query of a

word, a standard error correction code could not defend it against SEU events. In this paper, we propose a method that does not

require any modification to a CAM’s internal structure and, therefore, can be easily applied at system level. Error detection is performed

by using a probabilistic structure called “Bloom filter,” which can signal if a given data is present in the CAM. Bloom filters permit to

efficiently store and query the presence of data in a set. But, while a CAM suffers from SEU induced errors, the probabilistic nature of

Bloom filters has as a consequence the so called false-positive effect. This paper shows that, by combining the use of a Bloom filter

with a CAM, the complementary limitations of these modules can be compensated. The combined use of a CAM and a Bloom filter is

analyzed in different cases, showing that the proposed technique can be implemented with a low penalty in terms of area and power

consumption.

Index Terms—Bloom filter, content addressable memories, error detection and correction

Ç

1 INTRODUCTION

A content addressable memory (CAM) is an SRAM-
based memory capable of comparing the input data

against the data stored in the memory, providing as result
the address of the matching data [14], [5]. CAMs with small
dimensions are commonly used in cache or translation
lookaside buffers (TLB), [15] while large CAMs are used in
systems that must perform rapid searches within a large
amount of data. Nowadays, one of the most used applica-
tions where CAMs are used is packet forwarding and
classification in high-speed network systems [16]. A
particular kind of CAM-like structure is the array realizing
the tag field of a cache memory. When a processor needs to
read or write a location in the main memory, first it checks
whether that memory location is in the cache. This is
accomplished by comparing the address of the memory
location to all tags in the cache that might contain that
address. n-way associative caches are commonly used to
simplify the cache architecture and to limit the power
consumption of the tag search. With an n-way set
associative cache a memory location can be stored only in
a subset of n locations of the cache. When n corresponds to
the total number of cache rows, the cache is called fully
associative, while if each entry in main memory can go in
just one place in the cache, the cache is directly mapped.

Currently, the use of nanometric scale technology, and
the increase in the overall number of stored bits have

caused a consequent increase in the error rate due to the
occurrence of single event upsets (SEUs). SEUs occur
because of particles striking a sensitive area of a circuit.
The interaction between silicon and particles creates free
charges that can be collected by the sensitive circuit nodes
close to the location of the particle impact. The collected
charge can change the state of a circuit, for example, by
flipping the value of a bit from 0 to 1 or vice versa.

These effects are well known for SRAM and DRAM
memories, and many strategies have already been pro-
posed to mitigate the effects of SEUs in memories, based on
information redundancy or on technology/circuit level
solutions. Information redundancy usually has been
exploited by using error-detection and correction codes,
while technology and circuit solutions are aimed at
increasing the critical charge value [1].

However, these techniques are not well suited to be
directly applied to a CAM, and therefore new approaches to
mitigate SEU effects in CAM should be developed to use
large CAMs in complex systems while ensuring high levels
of reliability. In the literature different techniques have been
proposed to enhance robustness against SEUs in CAM.
Almost all the proposed techniques require modifications to
the CAM architecture, performed at circuit and/or at
architectural level.

The effects of an SEU on a memory device closely relate
to the technology node at which the device is realized.
While until few years ago an SEU on a memory corre-
sponded to a single-bit upset (SBU), in a memory realized
with feature size less than 90 nm a single particle can
change the value of multiple bits [17], [19]. This kind of
effect is commonly known as multibit upset (MBU). In the
remainder of this paper, we use SEU to refer to a generic
radiation induced error, while we use the SBU and MBU
terms to refer to errors affecting one or more than one bit,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013 1111

. The authors are with the University of Rome “Tor Vergata” Via del
Politecnico 1, 00133 Rome, Italy.
E-mail: {pontarelli, ottavi}@ing.uniroma2.it.

Manuscript received 20 Dec. 2011; revised 8 Feb. 2012; accepted 15 Feb. 2012;
published online 21 Feb. 2012.
Recommended for acceptance by J. Xue.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-12-0963.
Digital Object Identifier no. 10.1109/TC.2012.56.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

respectively. In particular, we refer to an l-bit MBU for an
SEU affecting up to l bits in the same word. Note that an
l-bit MBU can change up to l bits stored in consecutive
locations, but can also change only a subset of the bits
stored in these locations, depending on the values stored
previous to the occurrence of the particle impact.

While error-correcting codes (ECCs) can detect and
correct errors in SRAM and DRAM, and can be easily
extended to MBU (see, e.g., [18], [2]) they cannot directly be
used in associative memories such as CAMs or caches. For
example, suppose that an error occurs in an entry of a
CAM, if that entry is queried, the CAM will respond that
the entry is not present, without giving any information
about the original value of that entry. Therefore, a standard
CAM search operation cannot detect and correct a
corrupted codeword.

The use of ECC in a cache is usually applied to protect
the cache data, while for the tag, the only protection is given
using a parity bit, which is unable to perform error
correction. An error affecting a tag of the cache usually
causes a miss event when that tag is queried, causing the
processor to fetch data from a higher level cache or from the
external memory.

We propose a method that does not require modifica-
tions to the internal structure of the CAM, since this is often
designed in a full custom design flow to minimize power
and area consumption of the core cell, therefore it is
preferable to add error-detection and correction features
without compromising the internal structure and, therefore,
the overall performance of the circuit.

Finally, while the problem of SEU in cache memories has
been discussed previously, the aim of this paper is to focus
on a generic CAM device that differently from cache
memories is inherently fully associative. The full associa-
tivity has consequences both on power consumption of
these devices and on the applicability of other techniques
for error detection and correction.

The underlying idea of this paper is to add in parallel to
the CAM a well-know data structure, called Bloom filter, to
efficiently detect if the CAM has provided a correct result or
if it is affected by an error. A Bloom filter is a structure that
can be realized efficiently with limited hardware resources,
or with efficient software algorithms.

In a Bloom filter when data has to be stored (or queried) it
is hashed with multiple hash functions, and at the output of
each hash a corresponding memory location is written
(read). A Bloom filter performs a limited number of memory
accesses, one for each hash output, and therefore its
memory can be easily protected against SEU by using a
standard ECC. This characteristic permits to design a
system without considering the possible SEU occurrence
in the Bloom filter memory, thus supposing that the filter
memory can be efficiently protected by ECC. A Bloom filter
performs two tasks: 1) stores a set of items in its memory,
and 2) quickly responds to a query about the presence of an
item. The drawback of using such a structure lies in its
probabilistic nature that yields to the so-called false-positive
effect. A false positive occurs because, due to the aliasing
given by the hash functions, a query performed on the
Bloom filter has a certain probability, (called false-positive
rate), of producing an erroneous result, i.e., signaling a data

as present. However, when a Bloom filter signals that a data
is not present, this will always be true (i.e., a false negative
never occurs in a Bloom filter).

Therefore, an architecture using both a CAM and a
Bloom filter could potentially be affected by two very
different (and opposed) undesirable effects are as follows:

1. The CAM could give a wrong answer due to the
occurrence of an SEU.

2. The Bloom filter could give a wrong answer due to a
hash collision.

It will be shown that these two effects are complemen-
tary and that can be used for mutual benefit, i.e., on one side
the CAM can detect a false positive occurring in the Bloom
filter, while on the other side the Bloom filter, (made
resistant to SEU by using a standard ECC), can detect SEU
induced errors occurring into the CAM.

This paper also proposes a suitable algorithm, similar to
the one presented in [10], that allows correcting an error in
the CAM after its detection by comparing data stored in the
CAM with those stored in the Bloom filter. Finally, to
manage the dynamic behavior of a CAM that usually
deletes and update its content, a well-known extension of
the Bloom filter, called counting Bloom filters [33] is
applied. Experiments performed on the realized system
by using a cacti-based model [34] show that the technique
proposed in this paper introduces an area overhead ranging
from 10 to 50 percent and a 20-30 percent additional power
consumption. Moreover, the proposed solution is particu-
larly suited for CAM with wide word sizes since the
overhead is independent on the CAM word size. Simula-
tion experiments have also been performed on the caches
and TLBs of a microprocesss protected by our proposed
method, to show its effectiveness.

The remainder of the paper is structured as follows:
Section 2 presents a survey of previously proposed methods
for protecting CAM against the occurrence of SEU. Section 3
discusses the basic properties of a CAM, and shows the
effects of an SEU hitting a CAM. Section 4 gives a back-
ground on Bloom filters, while Section 5 presents the
proposed architecture of a CAM with error-detection and
error-correction capabilities. Section 6 discusses the sizing of
the parameters of the block introduced in Section 5 (the
counting Bloom filter and the auxiliary CAM) while Section 7
discusses the resource evaluation. Section 8 presents the
experiments related to the application of our method for
protecting caches and TLBs of a microprocessor. Finally,
Section 9 draws the conclusions.

2 RELATED WORK

A discussion on the effects of SEU in CAM devices has been
presented in [27], [28], and [24]. The presence of an error in
these devices can give different types of incorrect responses
that have been classified like pseudo-HIT or pseudo-MISS
events. When a word value becomes incorrect due to the
occurrence of an SEU, if a query looks for the original value
the response will be an incorrect miss, while if a query looks
for the erroneous value the response will be an incorrect hit.
To protect these memories against the SEU, different
methods have been developed. Here, a literature survey is

1112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

proposed starting from the methods that modify the CAM
cell at circuit level, to the methods that exploit ECC, up to
system level methodologies.

An example of CAM reinforced at circuit level against
SEU is given in [7], where a set of core cell of the CAM
array based on feedback or cross-coupled inverters that
strengthen the cell against SEU events are proposed.
Instead, in [20], the use of DRAM instead of SRAM has
been proposed, exploiting the assumption that DRAM are
less susceptible to SEU than SRAM. Salice et al. [9] propose
a methodology to produce a CAM structural architecture
starting from a functional description of some high-level
properties of the device. In [21], the content of the CAM is
continuously refreshed by an associated DRAM with ECC
features to scrub the memory recovering the CAM from
errors due to SEU. In [22], the words stored in a CAM are
protected against SEUs by utilizing one or more parity bits,
and the SEU induced errors detection and correction is
demanded to a modified encoder block that effectively
works also as an embedded error-correction block based on
Hamming codes. This encoder, therefore, requires a
number of several cascaded XOR gates (see also [29]),
which degrade area occupancy and most of all the timing
performances with respect to a nonprotected CAM. More-
over, the solution proposed in [22] for match-line sense
amplifiers although quite interesting, could be affected by
issues both related to power consumption and noise
immunity.

Krishnan et al. [8] substitute the sense amplifier at the
end of a match line with a comparator to signal a match
even if some ternary bits mismatch and then adds a
suitable error-correction code for ternary CAM (called
TECC). The techniques proposed in these papers to prevent
SEU induced errors use a circuit level approach that
requires changes in the internal structure of the CAM,
and consequently a redesign of the entire chip.

Because of the widespread usage of cache memories,
many works focus on cache memories as for example [23],
[25], [26]. The methods presented in [25] and [26] are
developed for a specific cache level , ([25, L1], [26, L2]), and
suppose that the used caches have a limited associativity. In
particular, in [25], a four-way associative cache is used,
while in [26] data are provided for an eight-way set
associative cache. The methods are developed to work well
under the assumption of data locality, as it is commonly the
case for microprocessor caches. This assumption cannot
hold when the CAM is used for high speed look-up or for
networking systems. Moreover, all the methods described
in [23], [25], and [26] are based on the use of an additional
(small) fully associative cache in parallel to the main n-way
associative cache. The fully associative cache can be
maintained small exactly because the main cache has a
limited associativity, but an extension of these methods to
protect a generic full associative CAM is not trivial and the
achievable results cannot be foreseen.

Another solution using a redundant CAM for error
detection and correction has been proposed in [30].
However, the use of a duplicated CAM in [30] has a serious
drawback in power consumption, due to the power hungry
nature on these devices. Both the methods proposed in [25]

and [26] and the one described in [30] do not require any
modification to the CAM internal structure, and, therefore,
can be applied at a system level, using suitable redundant
components to obtain error-detection and correction cap-
abilities. In this paper, we present a solution that modifies
the architecture proposed in [30] to minimize the resource
occupation and the power consumption of the architecture
described in [30]. Our solution is based on the use of a
probabilistic structure called “Bloom filter.” The duplicated
CAM is substituted by the Bloom filter and a store/query
operation to the CAM is given in parallel also to the Bloom
filter. The combined use of CAM and Bloom filters has been
proposed in [11], where the performances of content
addressable memory aided hash table are evaluated.
However, Wan et al. [11] propose to combine CAM and
Bloom filters only for performance enhancement, and not
against the occurrence of Soft errors. Finally, Bloom filters
have been proposed to reduce latency [12] and power
consumption [13] in cache memories.

3 ARCHITECTURE OF CONTENT ADDRESSABLE

MEMORIES AND CONSEQUENCES OF A SOFT

ERROR IN CAM

3.1 Architecture of Content Addressable Memories

Fig. 1 shows the schematic of a CAM. The input search
word is an n-bit string which is concurrently compared to
all the J ¼ 2M words stored in the CAM. The number of bits
of the search word (n) ranging from 36 to 144 bits is usually
much larger than M that usually ranges from 7 to 15 bits
[14]. The memory array of a CAM has a structure that is
similar to a conventional SRAM, with an arrangement in
rows and columns. From the operational point of view, the
write operation inside the CAM is very similar to the write
operation of a RAM. The data is written through the CAM
bit-lines, while the word-line identifies which row of the
array must be written by the data driving the bit-lines.
Instead, the specific CAM functionality of searching a data
inside the memory is carried out in parallel by exploiting
the suitable additional circuitry that is not present in the
SRAM array. From the SEU susceptibility point of view, the
core cell of a CAM is quite similar to the conventional
SRAM cell, and a particle hitting the CAM produces similar
consequence on the bits stored in the array.

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1113

Fig. 1. Scheme of a CAM.

When the same data is stored in different location of a
CAM, and this data is queried, then two different policies
can be applied. The most used policy uses a priority
encoder designed to establish a priority in the encoded
output thus providing only one output [4]. For instance, the
priority encoder provides as an output the matching word
with the lowest (or highest) value: We call this resolved

multimatch approach. A second policy requires the intro-
duction of a signal called Nmatch that provides the number
of matched lines [6]; on the encoder output the matched
lines will be provided as an output one per clock cycle: We
call this unresolved multimatch approach.

3.2 Consequences of a Soft Error in a CAM

A bit flip occurring in the memory composing a CAM can
have different effects depending both on the location of the
SEU and on the functional usage of the CAM. In this
section, we discuss the effects of soft errors, by isolating
four possible cases:

1. pseudo-MISS. An SEU changes the content of the
memory in a certain location, therefore when that
content is searched, the CAM does not provide a
match. An example is provided in Fig. 2a. An SEU
hits the entry 0 of the CAM changing its content
from 00100110 to 00100111. When the word
00100110 if requested, the CAM will respond with
a miss signal.

2. pseudo-HIT. A corrupted memory content corre-
sponds to another content. If this word is searched,
the CAM gives as response the location in which the
error has occurred. With the same error condition of
the previous case, if the word 00100111 is requested,
the CAM will respond giving the entry 0 as an
output. This situation is shown in Fig. 2b. It should
be noted that the same SEU can, therefore, produce
both a pseudo-MISS and a pseudo-HIT effect.

3. multi-HIT. If the word changed by a bit flip assumes
the same value stored in another entry of the CAM, a
multi-HIT error occurs. The effects of a multi-HIT
error also depend on the kind of policy applied in
case of a multiple match. If a priority encoding

(resolved multiple matching) is used, the outcome of
a multi-HIT error could be masked if the priority of
the correct match is higher than the priority of the
wrong one. Instead, if the CAM uses the unresolved
multiple matching policy by providing all of the
matched records in subsequent clock cycles, then in
case of a multi-HIT error, the number Nmatch of
matched output will be increased of 1 with respect to
the correct value. This case is presented in Fig. 2c.

4. wrong-HIT. This error occurs only in case of multiple
matching. Suppose to have words stored in k
different entries and that one of these words is
affected by an SEU. If the CAM uses the unresolved
multiple matching policy, in case of a wrong-miss
error the number Nmatch of matched output lines will
be k� 1. Instead, if a priority encoding (resolved
multimatch) is used, the SEU produces an error if
the location affected is the one with the highest
priority (with the lowest value in our assumption),
and the CAM responds with an erroneous entry that
is an entry with priority lower than the correct one.
An example for this error is presented in Fig. 2d.
Note that when the SEU hits an entry that does not
have the highest priority the error is inherently
masked by the other entries with higher priority.

From the above description, it can be seen that different
kinds of multiple matching policies, provide different
behavior when an SEU occurs in the CAM memory.

4 OVERVIEW ON BLOOM FILTERS

In this section, we present an overview of the well-know
Bloom filter [31] and counting Bloom filter [32], [33]. In
particular, we investigate the effects related to the satura-
tion of a counter in the counting Bloom filters and its effects
on the overall false-positive probability of the filter.

A Bloom filter [31] is a probabilistic data structure used
to check the membership of an element in a set. The
structure allows the occurrence of false positives (i.e., the
filter signals an element as present even if it is not true), but
false negatives are not possible (i.e., if an element is present
the filter will never signal the opposite). Elements can be

1114 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 2. Possible errors occurring in a CAM. Original and corrupted CAMs are presented side by side. In (a), the SEU hits a bits of entry 0 of the CAM.
When the word is requested the CAM responds with a pseudo-MISS signal. In (b), the same SEU also produces a pseudo-HIT. In (c), a multi-HIT
error is caused by the SEU affecting a bit of entry 2. In (d), the same error produces a wrong-HIT.

added to the set, but not removed and the more elements
are added to the set, the larger the probability of false
positives. In this paragraph, we report the equations needed
to correctly dimensioning the filter with respect to the
required false-positive probability and the expected number
of element to be stored. A Bloom filter is implemented as a
bit array of m bits accessed via k hash functions
H1ðxÞ . . .HkðxÞ, each of which maps a set member x to
one of the m bits within the bit array. We denote as vðiÞ the
value of bit i within the bit array.

Two operations are possible with a Bloom filter are as
follows:

1. Insertion. An element x is inserted into the filter by
setting to one all the indexes of the bit array
addressed by the k hash functions. In a mathematical
notation, this corresponds to

8i 2 f1::kg; vðHiðxÞÞ 1:

2. Querying. An element is present in the filter if all the
values of the bit array addressed by the k hash
functions are equal to 1

result minfvðHiðxÞÞg; i 2 f1::kg:

For a Bloom filter in which n elements are stored, the
probability �ðnÞ that a given bit in the filter is zero is given by

�ðnÞ ¼ 1� 1

m

� �kn
� e�nkm: ð1Þ

If we test membership of an element that is not in the set,
each of the k bit array values indexed by the hash is 1 with
probability 1� �ðnÞ. The probability of all of them being 1,
which would cause the false positive, is then

PfpðnÞ ¼ ð1� �ðnÞÞk � ð1� e�
kn
mÞk: ð2Þ

The probability of false positives decreases as m
increases, and increases as n increases. For a given m and
n, the value of k (the number of hash functions) that
minimizes the probability is k ¼ m=n ln 2 � 0:7 �m=n.

Using the optimal value of k we obtain

PfpðnÞ ¼ 2�k � 0:61m=n: ð3Þ

Using (3), we can size the Bloom filter according to a
required number of elements to be stored and to a required
minimum false-positive rate. In Fig. 3, the scheme of a
Bloom filter is presented.

A counting Bloom filter [32] is a generalization of a Bloom
filter that is implemented as an array of bins of m cells each

containing b bits.1 CBF can be used to implement multisets,
which maintain a cardinality for each element within the
set; in the case of CBF, the cardinality can be between 0 and
2b � 1. Differently from Bloom filters, CBF are able also to
delete without incurring in false negative. The three
operations of the CBF are as follows:

Increment (or insertion) of a bin for a set member x in a
CBF consists of setting

8i 2 f1::kg; vðHiðxÞÞ minfvðHiðxÞÞ þ 1; 2b � 1g:

Decrement (or deletion) of a bin for a set member x in a
CBF consists of setting

8i 2 f1::kg; vðHiðxÞÞ maxfvðHiðxÞÞ � 1; 0g:

Querying of a set member x within a CBF is the same as
in a Bloom filter.

Through the deletion operation, the counting Bloom
filters preserve the characteristic absence of false negatives
typical of Bloom filters until no overflow occurs on the
counters. To explain this concept, consider the case in which
a number of items n > 2b � 1 saturates the ith counter. After
2b�1 deletions, the counter is set to zero, even if not all the
n items corresponding to the ith counter have been evicted
from the filter. A modified version of the decrement
operation can be used to limit this behavior. The operation
is modified as follows (see [32]):

8i 2 f1::kg; vðHiðxÞÞ

 maxfvðHiðxÞÞ � 1; 0g; if vðHiðxÞÞ < 2b � 1;
2b � 1; otherwise:

�

With this modification if a saturated counter will not be
decremented anymore. The CBF, therefore, keeps track of
the items that have been stored but it will not decrement the
counters that have been saturated. The effect of the presence
of this “dirty” counters is the increase of the false-positive
rate of the filter. In fact, if a number s of counters is
saturated, it is like ns ¼ ds=ke additional items have been
stored in the filter. The false-positive probability of the
counter can be, therefore, evaluated as

PfpðnÞ �
�
1� e�

kðnþnsÞ
m

�k
: ð4Þ

The increment in the false-positive probability given by
ns is negligible since usually n has a magnitude of 1,000 or
more, while the magnitude of ns is very small. In fact, the
probability that a specific i counter in the array of counters
is saturated, can be computed as [32]:

PsatðiÞ ¼ P ðvðiÞ > 2bÞ < ðe � lnð2Þ=2bÞ2
b

: ð5Þ

And if PsatðiÞ � n the probability of having ns saturated
counters can be computed by using the binomial distribution

P ðnsÞ �
n
ns

� �
� PsatðiÞns � ð1� PsatðiÞÞn�ns : ð6Þ

From (6), it can be seen that using 4 bits, the probability
of having a saturated counter is less than 1.3E-9 for a CBF
with n=1E6. Using 2 bits counters the probability of having
ns > 10 saturated counters is 2E-11. Therefore, in the

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1115

Fig. 3. Scheme of a Bloom filter. The data x to be stored is hashed n
times and the bits addressed by the hashes are set.

1. Note that a Bloom filter is simply a counting Bloom filter where b ¼ 1.

remainder of this paper, we will assume b ¼ 2 the number
of bits of the CBF, and we will use (2) to compute the false-
positive probability neglecting the inappreciable contribu-
tion given by the saturated counters.

A counting Bloom filter can, therefore, be used to
approximately answer to the questions: Is a member of a
set present in the filter now? How many occurrences of this
member are present? In the first question, the word now
indicates that the member has been added, but not deleted.
The second question is similar to the unresolved multiple
matching CAM behavior, providing the number of the
instances of an element present in the filter.

5 ERROR DETECTION AND CORRECTION IN A CAM

In this section, we discuss how to detect and correct SEU
induced errors in a CAM. As stated in Section 1, we will
focus on a solution that will not require substantial
modifications to existing CAM circuits. As in [22], we
make use of parity check bits, and, by introducing a Bloom
filter we correct SEU induced errors at a higher system
level. Therefore, while we assume that the CAM output
could be affected by an error, we monitor the inputs and
outputs of the CAM and, by leveraging the characteristics
of the fault model described above, we show that we can
correct the occurrence of errors. Differently from [22] the
address that is provided to the CAM already includes the
parity bits, this encoding can be performed in a block that is
externally instantiated with respect to the CAM itself,
therefore, not requiring any structural modification to
existing commercial CAMs. Another main difference
between our method and the method proposed in [22] or
[10] is that the redundant parity bits are used to form an
error-detection code, leaving the error-correction phase to
the combined use of the information provided by the Bloom
filter and the error-correction algorithm. The separation
between the detection and the correction phases allows the
designer to avoid the use of decoders for ECC that can be
very costly, especially for multiple-bit error correction [3].
The parity check bits protection scheme is based on
memory interleaving.

Memory interleaving is one of the most common
approaches to deal with multiple errors in memories [18].
This approach exploits the topological contiguity of the
MBUs, as discussed in [17] arranging the codeword so that
neighboring cells belong to different codewords. Therefore,
errors in an MBU will cause single errors in different words
that can be detected by the use of single-error-detection
codes. The scheme of a memory protected by an interleaved
parity-based error-detection scheme is shown in Fig. 4a.

A memory of data width W is divided in dW=IDe
groups of ID bits, where ID is the interleaving distance.
The check bits P ð0Þ; . . . ; P ðdW=IDe � 1Þ are computed
staring from the data bits Dð0Þ; . . .DðW � 1Þ in the
following way:

P ðiÞ ¼
MdW=IDe�1

k¼0

Dðiþ k � IDÞ: ð7Þ

In Fig. 4b it can be seen an MBU affecting three
consecutive bits. The length l of the MBU is three and all

the bits are affected by the error. The parities of the groups
0, 2, 3 are changed, while the parity of group 1 in
unchanged, since no errors occur in this group. Instead,
the picture in Fig. 4c shows an MBU with length l ¼ 5, but
the errors actually affect 3 bits, corresponding to an
undetectable error. In fact, the errors affect two bits of the
group 2, leaving its parity unchanged. To avoid these
undetectable errors the interleaving distance ID should be
chosen as ID � l, where l is the maximum expected MBU
size. The redundancy needed to protect the CAM against
l-MBU is, therefore, linear with respect to the maximum
expected length of the MBU. Under this assumption, all the
errors caused by an SEU change al least one group parity,
transforming the codeword in a noncodeword.

With the proposed parity scheme, we can always avoid
the pseudo-HIT error in a CAM. In fact, with an interleaved
parity encoded CAM if an SEU hits a codeword it will turn
it into a noncodeword (rather than a wrong codeword) and,
thus, since the CAM search words are always codewords
pseudo-HIT or multi-HIT errors will never occur. When an
error hits an entry of the CAM, changing it into a
noncodeword, the CAM produces a MISS signal if this
entry is queried. Note that this error induced false-MISS
cannot be distinguished by the MISS signal produced when
querying an item not stored in the CAM.

Therefore, a CAM affected by an SEU can be seen as a
structure that, when affected by an error, gives a false-
negative response to the query of an element. This is exactly
the opposite behavior of a counting Bloom filter. The CAM
is susceptible to the occurrence of false negatives (due to
SEU), the CBF is susceptible to the occurrence of false
positives (due to hash collision). Based on this assumption,
we can describe the proposed solution as shown in Fig. 5

The address is fed to a counting Bloom filter and in
parallel is given to a CAM by passing through the “GROUP
PARITY ENCODER” module. The CBF is configured to
provide as output a MISS response if all the counters
corresponding to a query are set to 0, a HIT otherwise. The
deletion operation was presented in Section 4 and avoids
the presence of false negatives at the cost of a higher false-
positive probability. With this approach the CBF acts as a
classic BF with respect to the query operation, but can also
perform the delete operations. When an entry in the CAM is
substituted by another one, the old entry is also deleted
from the CBF, while the new one is inserted. As discussed
in Section 4. The number b of bits of the CBF is set to 2, since
the number of saturated counters is always negligible. The
outputs of the CAM and of the CBF are input to the
“CHECKER” that detects whether there has been an error.

The possible cases are summarized in Table 1.
When the CAM responds with a HIT, its output can be

considered correct (with parity encoding there are no false
HITs) this will be different when we will make also the
assumption of multiple HITs as we will discuss below.
Instead, when the CBF provides a MISS signal, because
there are no false negatives in a CBF, the “CHECKER”
module can output a MISS signal. A problem arises when
the CBF provides a HIT signal and the CAM a MISS signal.
This discordance can be due either to the presence of a false
positive in the CBF, or to the presence of an SEU in the

1116 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

CAM, or both (although this is a very unlikely case). When
this situation occurs the checker raises an error signal and a
correction algorithm must be applied to detect whether the
CAM is affected by an SEU or the CBF has given a false
positive. The algorithm will first check if the CAM has been
affected by a false MISS due to the corruption of a bit of the
searched word. To check if the CAM has been affected by
an SEU it is possible to query the CAM against all the
possible noncodewords that have a certain Hamming
distance from to the word that has produced the error
signal. Supposing that the maximum expected length of an
MBU is l, not only the maximum Hamming distance
between the modified word and the original word is l,
but the modified bits are confined in l consecutive bits.
Fig. 4b presents an MBU with l ¼ 3 in which all the bits
have been changed, while in Fig. 4c only a subset of the

l ¼ 5 consecutive bits have been changed by the SEU.
Therefore, the possible number of noncodeword to check is
2l �W , where W is the data width of the CAM and 2l is the
number of possible errors that can be caused by an l-bits
MBU. After 2l �W queries, the algorithm is able to discover
if the discordance has been caused by an SEU. If the
noncodeword has been found, it can be corrected, resolving
the discordance; this approach is similar to the method
described in [10]. Otherwise, we know that no SEU has
occurred and the CBF has been affected by a false positive.
Because of the nature of CBFs, a false positive will be given
each time the word causing the false positive is queried, we
need a method to mark this entry in such a way that the
algorithm for resolving discordances is executed only the
first time, and not each time this word is queried. A possible
solution is to store the words producing false positives in a

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1117

Fig. 4. (a) Scheme of a memory protected by interleaved parity-based error-detection code. (b) Detectable 3-bits MBU error. (c) Undetectable 5-bits
MBU error.

little auxiliary CAM, which signals to the checker that the
HIT given by the CBF is a false positive. This auxiliary CAM
can be very little compared to the main one, and can be
easily integrated in the principal CAM either when the
CAM is used in conjunction with a RAM, or when one of
the multiple match policies is applied. The scheme of the
CAM with CBF and auxiliary CAM is presented in Fig. 6.

The corresponding possible cases are now summarized
in Table 2.

For a given query, the event that two CAMs give a MISS
signal and the CBF gives a HIT can occur only once. In fact,
if this event is due to an SEU, this will be detected and
corrected by the correction algorithm, instead, if the event is
due to a false positive generated by the CBF, the auxiliary
CAM will flag the data causing a false positive, and each
subsequent query will induce also a HIT in the auxiliary
CAM. Therefore, the event of MISS in the two CAMs and
HIT in the filter occurs only once, because the correction
algorithm modifies this situation by either correcting an
SEU in the CAM, or by flagging the offending data in the
auxiliary CAM. A quantitative analysis of the size of the
auxiliary CAM will be given in Section 6. With a correct
sizing of the auxiliary CAM, the probability of an overflow
in the auxiliary CAM can be made very low.

However, even if this event occurs, the system continues
to work correctly. The drawback of having the auxiliary
CAM full is that some false positive responses of the CBF
cannot be inserted in the auxiliary CAM, therefore, each
time one of these entries is requested to the system time
will be wasted while performing the above described
correction algorithm.

A different version of the above described approach can
be introduced when the CAM is used in conjunction with a
RAM to implement for example a Look-up address table.
The Look-up address table is composed of a CAM and a
RAM. The CAM outputs the index associated to the entry
matching the search word at its input. This index is the
address provided as an input to the RAM associated to the
CAM which, therefore, always outputs a value. The value
provided by the RAM is the final result of the look-up
operation. This combination has a wide usage in the
implementation of fast lookup tables for network routers.
Usually, with the lookup operation, the provided input
corresponds to an output of the same size.

Fig. 7 shows an example where a solution similar to
what described in Fig. 5 is adopted to a case when the

CAM is used in conjunction with a RAM to provide a
Look-up address table. The integrity of the data stored in
the RAM itself is ensured by the use of ECC (such as
Hamming), moreover in each RAM entry a further bit is
added. This additional bit is used to substitute the
auxiliary CAM. The CAM system is composed of a
CAM/RAM block, a parity encoder that provides the
parity of the input address (search word), a counting
Bloom filter and a checker that chooses the correct output
based on the policy described in Table 2. The difference
with respect to the previous case is that when the CAM
produces a MISS signal and the BF provides a HIT signal
due to a false positive, the correction algorithm detects the
false positive, inserts the data producing the false positive
directly into the CAM, and sets to 1 the auxiliary bit in the
associated row of the RAM instead of using an auxiliary
CAM. Therefore, a further query of the same data will
produce a HIT response on both the CBF and the CAM,
but the checker will detect that this corresponds to a false
positive on the CBF by checking the additional bit A
stored in the RAM. It should be noted that, while in [30]
the parity bits were shifted from the CAM to the RAM, in
this case they have been left into the CAM. In [30], the two
CAMs used to detect errors were also used to manage the
false HIT occurrence. Instead, with the proposed approach
only one CAM is used, and the CBF replaces the
duplicated CAM proposed in [30].

6 SIZING OF BLOOM FILTER AND AUXILIARY CACHE

In this section, we discuss how to define the size of the
counting Bloom filters and of the auxiliary cache. First of all,
we report the probability of false positive for a Bloom filter
in Fig. 8.

1118 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 5. Scheme of the proposed error-correction scheme for a CAM/CBF pair.

TABLE 1
Possible Error Cases and Correct Output Selection

In can be seen that the probability of false positive grows
with the number of stored items and directly depends on
the ratio between the number of stored items n and the filter
size m. In particular, a filter occupation corresponding to a
n=m ratio of 1=8 has a false-positive probability of about
1E-3 (0.1 percent), while a value of 1=16 provides a false-
positive rate of about 1E-6. It should be noted that the size
of the Bloom filters is independent on the width of the
searched data, therefore, this method obtains better results
for CAMs with wider word width.

Moreover, it should be noted that the theoretical results
presented here correspond to a worst case scenario in
which no address locality has been taken into account, in
fact it can be shown that a sequence of consecutive
addresses (typical of locality in caches) does not induce
hash collisions. The interested reader can refer to the data
presented in [12] and [13] that also provide simulation
results from real-case scenarios.

From what discussed above, we recall that a higher false-
positive rate in a Bloom filter corresponds to a temporal
overhead due to the execution of the error-detection
procedure. The Error-detection procedure searches in the
CAM against 2l �W noncodewords, where W is the width of
the searched word and l is the maximum expected length of
the MBU. The estimated temporal overhead can, therefore,
be computed as proportional to the product between the
false-positive rate and the number of queries, as reported in
the following equation:

Toverhead � Pfp � 2l �W: ð8Þ

To limit the Toverhead, we propose to leverage the auxiliary
CAM introduced above (Fig. 6). This approach gives a
substantial advantage under the hypothesis that the inputs
of the CAM are almost limited to a certain fixed subset of
items. This is a plausible assumption because we can
usually divide the set of data input to a CAM for a query
into two subsets: The subset of entries that are most likely to
the queried, corresponding to data stored in the CAM, for
which we want to know the corresponding entry, and the
subset of entries that are less likely to be queried which are

those not present in the CAM. With this assumption also
the words causing false positives in the BF belong to the
same subset. Once these entries have been stored in the
auxiliary CAM the false-positive rate of the filter is
drastically reduced until an entry not belonging to the
frequently used set causes an unexpected false positive.

Therefore, suppose that we have a set of frequently
queried words composed of K items, corresponding to the
number of entries of the CAM and Pfp, the probability that
there are J different false positive in the set is given by the
following equation:

PN ¼ J � Pfp=K ¼ J=K � Pfp: ð9Þ

The ratio J=K can be seen as the relative dimension of
the auxiliary CAM with respect to the CAM to be protected.
The tradeoff for minimization of the Toverhead can be,
therefore, performed by replacing in (8) Pfp with PN
obtained from (9). For example, using a n=m ratio of 1=8
and a J=K ratio of 1=128 the value of PN is around 1E-5.

7 RESULTS

To evaluate the effectiveness of the proposed solution, we
carried out several experiments with different values of
CAM widths and sizes to assess the corresponding area and
power overhead . Width values have been set to 32, 64, and
128 bits, while the number K of rows of the CAM varies
from 32 to 32K entries. For the comparison between the
CAM without error-correction capabilities and the one with

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1119

Fig. 6. Scheme of the proposed error-correction scheme for a CAM/CBF pair with auxiliary CAM.

TABLE 2
Possible Error Cases and Correct Output Selection

error-correction capabilities, we suppose to use an inter-
leaved factor of ID ¼ 4, therefore, the CAMs used for
comparison have widths of 36, 68, and 132 bits. The auxiliary
CAM, can be assumed to be 128 times smaller than the
principal CAM, thus providing a negligible contribution to
the overhead in terms of energy and area of the overall
system. To compute the contributions of the CBF overhead
in terms of area and power consumption, we fix for all the
experiments the ratio n=m ¼ 1=8 . The CBF area evaluation
has been done ignoring the contributions of the functions
performing the hash of the incoming data, thus, assuming
that the CBF is realized using an SRAM with a size within
the n=m occupation ratio. For a given size number of row K,
the corresponding size S of the CBF can be calculated
imposing that the number of items stored in the CBF is equal
to the number of rows of the CAM to be protected. With the
assumption that n ¼ K, and with 2 bits per counter we
obtain

S ¼ 2 �m ¼ 2 � K
n=m

:

With the ratio n=m ¼ 1=8 the size of the SRAM is 16 �K.
To collect the data for area evaluation, we used cacti 6.5
[34], while to estimate the CAM’s power consumption we
used a version that has been developed for fully associative

CAMs [35]. All data refer to the 32 nm technology node. In

Table 3, the parameters of the unprotected and protected

CAMs are reported, in conjunction with the size of the

SRAM used for the CBF.
Fig. 9 presents the area occupation of the different CAMs

taken into account. In particular, Fig. 9a is the area of an

unprotected CAM, Fig. 9b is the area of the corresponding

SRAM, Fig. 9c presents the total area occupation, and

Fig. 9d the overhead of our solution as the ratio between the

unprotected CAM and the sum of the SRAM and the CAM

with group parity protection.
The results of our evaluation in terms of power

consumption are reported in Fig. 10. The graphic in

Fig. 10a shows the power consumption of the original

unprotected CAM. Fig. 10b presents the data of the parity

group protected CAM and Fig. 10c the power consumption

of the SRAM used for the CBF. Finally, Fig. 10d presents the

power overhead of our solution.
The data presented in Fig. 9 shows that the overhead of

our solution is broadly independent of the CAM width and,

therefore, the percentage area overhead is reduced when

wide CAMs are used. In particular, for 64-bits CAM the

area overhead is less than 30 percent, while for 128-bits

CAM this value decreases to 15 percent.

1120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 8. The false-positive probability Pfp as a function of n and m. An optimal number of hash functions k has been assumed.

Fig. 7. Error detection and correction for a CAM used in conjunction with a RAM.

A similar discussion can be done for power consump-

tion. According to [36], the energy associated to a query in a

CAM is eight times higher than an SRAM access, hence we

can give an approximation of the CBF power consumption.

The energy overhead with respect to the unprotected CAM

has two main contributions: the use of a wider CAM to

accommodate the additional group parity bits and the

energy consumption of the SRAM. The former grows with
the width of the CAM, therefore corresponding to a
constant overhead, the latter is constant and, therefore, its
contribution is less important for wider CAMs. Also in this
case the data obtained using [34] for the estimation of the
SRAM power consumption and [35] are in accordance with
these considerations. In fact, it can be seen that the power
overhead starts from around the 25-30 percent for narrow
CAMs and decreases for wider CAMs.

The estimation of the overhead introduced by the parity
encoders was made according to [22]. The total number of
XOR gates for computing the ID check bits is W � ID.
Instead, the number of XOR levels for each check bit is
dW=IDe. These gates can be realized with less than 1,000
transistors, therefore the encoder introduces a negligible
contribution in terms of both area and power overhead.
Moreover, according to [22], the encoder delay can be
estimated to be approximately 1.0 ns, and the encoding can
be performed in a pipeline stage before the search.

Also the hash function for the CBF can be realized with a
network of XOR gates [37], and, therefore, both area and
energy associated to this function can be considered
negligible. To reduce the delay, the encoding and the
hashing functions can be computed in parallel, achieving an
overall latency penalty of one clock cycle.

It should be noticed that, even if the data presented in
[25] cannot be directly applied to a fully associative CAM,
its result for 16 KB four-way associative data cache in terms
of area penalty (10 percent) and energy penalty (20 percent)
are comparable with those presented here. In particular, the
use of CBF allows us to use an SRAM that requires less
power than a CAM, while for the area occupation the best
results are obtained for CAM with larger word width. With
respect to the data shown in [22], area and energy overhead

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1121

Fig. 9. Area occupation: (a) area of the unprotected CAM, (b) area of the SRAM used for the counting Bloom filter, (c) total area occupation, and

(d) overhead in percentage of the proposed solution.

TABLE 3
Parameters of the CAM and of the

Corresponding SRAM Used for the CBF

are higher, since Pagiamtzis et al. [22] report an area penalty
of 12 percent and a near zero energy overhead. However,
the solution presented in [22] is designed to face only
single-bit errors, while our solution has been designed to
tolerate up to 4-bits MBU. Moreover, while our solution can
be easily configured to tolerate MBUs of different length,
the scheme of [22] would require the use of complex ECCs
and its applicability does not appear to be straightforward.
From the results presented above, we can evaluate the
overhead of our solution in two different real scenarios in
which large CAMs are used. The first scenario is a Layer 2
Ethernet switch, which reads the 6 bytes ethernet destina-
tion address of each incoming Ethernet packet and selects
the forward output port depending on the value of a
forward table. Due to the dimension of the table (up to 128K
entries) these switches use an external CAM to store the
forward table. In this case, the width of the CAM is 48 bits,
while the number of entries varies from 32K to 128K (see for
example the CISCO Catalyst Family [41]). The use of these
external CAMs limits their maximum operating frequency
to 300-400 MHz. The dimension of the corresponding
SRAM used for the CBF varies from 512 Kbits (64 Kbytes)
to 2 Mbits (256 Kbytes). Since Layer 2 Ethernet switches are
usually equipped also with high-speed SRAM memories,
that provide several megabits of memories, the CBF can be
stored in these memories that are already available.
Alternatively, a commercial 18-Mbits SRAM would provide
enough space to store the CBF. It can be noted that these
SRAMs compared to the CAM have similar operating
frequencies, consume only a fraction of their energy and
have a much lower retail cost.

The second example is the tag array of caches and TLB for
a server oriented microprocessor. The presented method is
used to protect all these tags, and the effectiveness of our
method is tested simulating the behavior of a microprocessor

with respect to the insertion, query, and eviction operation in

the tag arrays, and the corresponding behavior of the

CBF used to protect the tags against the occurrence of a

temporary fault. The results of these experiments are

reported in the next section.

8 SIMULATION OF THE MICROPROCESSOR TAG

ARRAYS PROTECTION

For these experiments, we used the sim-outorder processor

simulator provided in SimpleScalar 3.0 [39] and the SPEC

INT2000 Benchmark suites [38]. The benchmarks have been

applied to a modified SimpleScalar simulator configured

with the same architecture parameters of [24] and reported

in Table 4.
The modification of SimpleScalar allowed us extracting

the addresses corresponding to the insertions, queries, and

evictions from the CAM associated to the different caches

and TLBs, i.e., from the level one instruction and data

caches, from the level 2 unified cache and from the data and

address TLBs. The results of the execution of these

programs have been reported in Fig. 11. The leftmost bar

of each group represents the number of executed instruc-

tions, while the other bars in each group represent the

number of accesses to the IL1, DL1, UL2, ITLB, and DTLB,

respectively (the y-axis is in logarithmic scale with unit of

1 million of instructions/accesses). Moreover, we reported

in Fig. 12 the miss rate (in percentage) for each kind of

cache/TLB (the y-axis in Fig. 12 is in logarithmic scale). We

remark that the results presented in Fig. 12 are very

dependent on the type of program that is being executed.

For this reason, the cache miss rate is highly variable

depending on the total number of accesses which is related

to the overall instruction and data footprint.

1122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 10. Power consumption: (a) energy for a search in the unprotected CAM, (b) energy for parity group protected CAM, (c) energy of the SRAM
used in the CBF, and (d) overhead in percentage of the proposed solution.

The addresses extracted during the execution of the
benchmarks have been used to feed a counting Bloom filter
for each kind of CAM used in caches and TLBs. We selected
the CBF for each cache/TLB using the entries of Table 3, that
should provide a theoretical false-positive rate of 0.1 percent.
More specifically, for the IL1 and DL1 caches that have 1,024
entries, we used a 16-Kbits CBF, for the UL2 cache that has
8,192 entries we used the 128-Kbits CBF and finally, for the
ITLB and DTLB we used the 512-bits CBF.

To each CBF, we associated a false-positive counter that
operates as follows: When an address not present in a cache/
TLB is signaled as present by the CBF, the corresponding
false-positive counter is incremented. At the end of the
program execution, the false-positive counter contains the
total number of false positives actually signaled by each
CBF. For all the caches and TLBs except UL2, the CBFs have
been filled as expected (i.e., they reached the occupation
ratio n=m ¼ 1=8) and received more than one million of
accesses, therefore the obtained results seems statistically

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1123

Fig. 11. Number of instructions and number of accesses (in millions) to the different caches/TLBs.

TABLE 4
SimpleScalar Configuration Parameters

valid. Instead, for UL2 the number of accesses was
statistically relevant only for the gzip, gap, and mcf bench-
mark programs which have more than one million of
accesses to the UL2 cache. The results of these simulations
are shown in Table 5. For each type of CAM taken
into account the worst case (in terms of false-positive ratio)
among the results obtained from the benchmark has been
reported. In particular, the second column reports the
benchmark name, the third one the number of detected
false positives, the fourth column presents the computed
false-positive ratio. The fifth column presents the theoretical
value obtained by using (2).

As already outlined in the previous section, the sequence

of consecutive addresses of instruction cache and TLB,
should greatly reduce the number of collisions in the

corresponding CBF, achieving results in terms of false-
positive ratio better than the theoretical ones. However, from

our simulation, we found a false-positive rate higher than
expected. We further investigated this behavior that occurs
when the Bloom filter size is too small. This behavior is

strictly dependent on the goodness of the hash functions
used. For our experiments, we used the method presented in

[40], which allows us to use hash functions that are not

completely independent, but that are more efficient with a

filter size m in the order of magnitude of several thousands.

Therefore, by using these hash functions that are suboptimal

in the case of small filters, the actual false-positive rate can be

worse than the theoretical ones as indeed was in the outcome

of our simulations. The last column of Table 5 presents the

time overhead. As discussed in Section 6, (see (8)) the time

overhead depends on the number of false positives and on

the width of the tag. When a false positive occurs, the

inspection of all the noncodeword near to the searched

codeword has to be done in the Cache. In our simulation, we

compute for each false positive an overhead of W clock

cycles, whereW ¼ 32 is the tag width. We remark that this is

a very pessimistic assumption, since the false positive

corresponds to a MISS in the cache, therefore, when this

condition occurs, the processor should wait until the data is

fetched from the next level cache/memory. During this wait

time, the scrubbing procedure used to check the presence of a

fault is partially overlapped with the wait for data fetching.

1124 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

TABLE 5
False-Positive Rate and Time Overhead for the CBF

Fig. 12. Miss rate (in percentage) for IL1, DL1, UL2, ITLB, and DTLB.

Finally, Table 6 presents the energy overhead of the
proposed method, with respect to the energy consumption
of the cache without any protection. The dissipated energy
in case of the unprotected cache is given by the sum of the
static and dynamic dissipation of the tag array, while
the energy in the protected cache is dissipated also by the
circuitry storing the additional parity bits in the tag array
and by the SRAM memory storing the content of the Bloom
filter. The static power dissipation contribution is applica-
tion independent, and depends only on the memory array
configurations. The dynamic contribution is affected by the
program execution, depending on the rate of accesses to a
certain cache. We computed this activity rate as the ratio
between the number of accesses and the number of
instructions. As expected, (see [34]) for UL2 cache the
activity rate is less than 1 percent for all the benchmarks,
consequently the power dissipation is dominated by the
static power consumption and is the same in all the
simulation performed. Instead, for DL1 and DTLB
the activity rate varies from 32 percent (gzip) to 48 percent
(eon), while for IL1 and ITLB it varies from 103 percent
(vortex) to 133 percent (perlbmk). The activity rate affects
both the cache and the SRAM, since any access to the cache
corresponds to an access to the Bloom filter, therefore the
sensitivity of the energy overhead to the application is
always very small. The energy consumption overhead has a
value between the overhead computed using only static
power consumption estimate (applicable to caches with low
activity rate), and the overhead computed using the
dynamic power consumption estimate. In fact, when the
activity rate increases. this dynamic part becomes domi-
nant. The data reported in Table 6 are referred to the worst
cases benchmark, therefore their value are representative of
all the benchmarks.

9 CONCLUSION

Content addressable memories like other memories can be
affected by the occurrence of SEU which can alter their
operation causing different effects such as pseudo-HIT or
pseudo-MISS events. To avoid the effects of SEUs the
available technical literature proposes several approaches
that require modifications to the internal architecture of the
CAM. This paper proposed a method to detect and correct
errors occurring on a CAM using interleaved parity bit
encoding to avoid pseudo-HIT and comparing the output of
the CAM with the response of a Bloom filter to detect the
other types of errors that can occur in the CAM. This
approach does not require any modification to the internal

structure of existing CAMs. The interleaved parity bit
encoding protects the CAM against MBU, while the
combined use of a Bloom filter with a suitable error-
correction algorithm allows to correct errors occurring in
the CAM. Moreover, the use of a counting Bloom filter
permits to consider the dynamic behavior of the CAM by
keeping track of the previous insertions and deletions.
Moreover, a discussion on the sizing of the Bloom filter and
of the auxiliary CAM has been presented and finally, some
simulation experiments showing the effectiveness of this
techniques for the protection of caches and TLB of a
microprocessor have been reported.

ACKNOWLEDGMENTS

Salvatore Pontarelli would like to thank Dott. Simone
Teofili and Professor Giuseppe Bianchi for introducing
him to the use of Bloom filters and for their encouragement
to search for new applications for these structures. This
research was partially funded by the Italian Ministry for
University and Research; Program “Incentivazione alla
mobilità di studiosi stranieri e italiani residenti all’estero”,
D.M. n.96, 23.04.2001 and by DEMONS, a research project
supported by the European Commission under its seventh
Framework Program (contract no. 257315).

REFERENCES

[1] N. Kanekawa, E.H. Ibe, T. Suga, and Y. Uematsu, Dependability in
Electronic Systems: Mitigation of Hardware Failures, Soft Errors, and
Electro-Magnetic Disturbances. Springer Verlag, 2010.

[2] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano, “A
Fault-Tolerant Solid State Mass Memory for Space Applications,”
IEEE Trans. Aerospace and Electronic Systems, vol. 41, no. 4,
pp. 1353-1372, Oct. 2005.

[3] W.W. Peterson and E.J. Weldon, Error-Correcting Codes. The MIT
Press, 1972.

[4] T. Yamagata, M. Mihara, T. Hamamoto, Y. Murai, T. Kobayashi,
M. Yamada, and H. Ozaki, “A 288-kb Fully Parallel Content
Addressable Memory Using a Stacked-Capacitor Cell Structure,”
IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1927-1933, Dec. 1992.

[5] L. Chisvin and R.J. Duckworth, “Content-Addressable and
Associative Memory: Alternatives to the Ubiquitous RAM,” IEEE
Computer, vol. 22, no. 7, pp. 51-64, July 1989.

[6] V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H-S. Kim, and C.
Mar, “66 MHz 2.3 M Ternary Dynamic Content Addressable
Memory,” Proc. IEEE Int’l Workshop Memory Technology, Design
Testing, pp. 101-105, 2000.

[7] N. Azizi and F.N. Najm, “A Family of Cells to Reduce the Soft-
Error-Rate in Ternary-CAM,” Proc. 43rd Ann. Design Automation
Conf., 2006.

[8] S.C. Krishnan, R. Panigrahy, and S. Parthasarathy, “Error-
Correcting Codes for Ternary Content Addressable Memories,”
IEEE Trans. Computers, vol. 58, no. 2, pp. 275-279, Feb. 2009.

[9] F. Salice, M.G. Sami, and R. Stefanelli, “Fault-Tolerant CAM
Architectures: A Design Framework,” Proc. IEEE 17th Int’l Symp.
Defect and Fault Tolerance in VLSI Systems (DFT ’02), pp. 233-241,
Oct. 2002.

[10] A. Bremler-Barr, D. Hay, D. Hendler, and R.M. Roth, “PEDS: A
Parallel Error Detection Scheme for TCAM Devices,” IEEE/ACM
Trans. Networking, vol. 18, no. 5, pp. 1665-1675, Oct. 2010.

[11] C. Wan, J. Lan, and Y. Hu, “Lookup with CAM Aided Hash
Table,” Proc. IEEE Int’l Conf. Frontier of Computer Science and
Technology, 2009.

[12] J. Peir, S. Lai, S. Lu, J. Stark, and K. Lai, “Bloom Filtering Cache
Misses for Accurate Data Speculation and Prefetching,” Proc. 16th
Int’l Conf. Supercomputing (ICS ’02).

[13] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.S. Lee, “Way Guard: A
Segmented Counting Bloom Filter Approach to Reducing Energy
for Set-Associative Caches,” Proc. ACM/IEEE 14th Int’l Symp. Low
Power Electronics and Design (ISLPED ’09), 2009.

PONTARELLI AND OTTAVI: ERROR DETECTION AND CORRECTION IN CONTENT ADDRESSABLE MEMORIES BY USING BLOOM FILTERS 1125

TABLE 6
Energy Overhead

[14] K. Pagiamtzis and A. Sheikholeslami, “Content Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and
Survey,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 712-727,
Mar. 2006.

[15] D.A. Patterson and J.L. Hennessy, Computer Architecture: A
Quantitative Approach, third ed. Morgan Kaufmann, 2003.

[16] H. Chao, “Next Generation Routers,” Proc. IEEE, vol. 90, no. 9,
pp. 1518-1558, Sept. 2002.

[17] S. Satoh, Y. Tosaka, and S.A. Wender, “Geometric Effect of
Multiple-Bit Soft Errors Induced by Cosmic Ray Neutrons On
DRAMs,” IEEE Electron Device Letter, vol. 21, no. 6, pp. 310-312,
June 2000.

[18] P. Reviriego, J.A. Maestro, S. Baeg, S.J. Wen, and R. Wong,
“Protection of Memories Suffering MCUs Through the Selection of
the Optimal Interleaving Distance,” IEEE Trans. Nuclear Science,
vol. 57, no. 4, pp. 2124-2128, Aug. 2010.

[19] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-Cell Upset
Probabilities of 45nm High-K þ Metal Gate SRAM Devices in
Terrestrial and Space Environments,” Proc. IEEE Int’l Reliability
Physics Symp. (IRPS ’08), pp. 181-186, 2008.

[20] H. Noda et at., “A Cost-Efficient High-Performance Dynamic
TCAM with Pipelined Hierarchical Search and Shift Redundancy
Architecture,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 245-
253, Jan. 2005.

[21] H. Noda, K. Dosaka, F. Morishita, and K. Arimoto, “A Soft-Error
Immune Maintenance-Free TCAM Architecture with Associated
Embedded DRAM,” Proc. IEEE Custom Integrated Circuits Conf.,
pp. 451-454, Sept. 2005.

[22] K. Pagiamtzis, N. Azizi, and F.N. Najm, “A Soft-Error Tolerant
Content-Addressable Memory (CAM) Using An Error-Correcting-
Match Scheme,” Proc. IEEE Custom Integrated Circuits Conf., 2006.

[23] A.K. Somani and S. Kim, “Transient Fault Detection in Cache
Memories by Employing a Small Shadow Cache,” Proc. Dependable
Computing for Critical Applications Conf., pp. 19-39, 1998.

[24] A. Hossein, S. Vilas, M.B. Tahoori, and D. Kaeli, “Vulnerability
Analysis of L2 Cache Elements to Single Event Upsets,” Proc. IEEE
Design, Automation and Test in Europe (DATE ’06), pp. 1-6, 2006.

[25] W. Zhang, “Replication Cache: A Small Fully Associative Cache to
Improve Data Cache Reliability” IEEE Trans. Computers, vol. 54,
no. 12, pp. 1547-1555, Dec. 2005.

[26] H. Sun, N. Zheng, and T. Zhang, “Realization of L2 Cache Defect
Tolerance Using Multi-Bit ECC,” Proc. IEEE 23th Int’l Symp. Defect
and Fault Tolerance in VLSI Systems (DFT ’08), pp. 254-262, Oct. 2008.

[27] S. Kim and A.K. Somani, “Area Efficient Architectures for
Information Integrity in Cache Memories,” Proc. Int’l Symp.
Computer Architecture (ISCA ’99), pp. 246-255, May 1999.

[28] H. Asadi, V. Sridharan, M. Tahoori, and D. Kaeli, “Reliability
Tradeoffs in Design of Cache Memories,” Proc. First Workshop
Architectural Reliability, 2005.

[29] H.J. Lee, “Immediate Soft Error Detection Using Pass Gate Logic
for Content Addressable Memory,” Electronics Letters, vol. 44,
no. 4, pp. 269-270, 2008.

[30] S. Pontarelli, M. Ottavi, and A. Salsano, “Error Detection and
Correction in Content Addressable Memories,” Proc. IEEE 25th
Int’l Symp. Defect and Fault Tolerance in VLSI Systems (DFT ’10),
Oct. 2010.

[31] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable
Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[32] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, 1998.

[33] C. Estan and G. Varghese, “New Directions in Traffic Measure-
ment and Accounting,” ACM SIGCOMM, vol. 32, no. 4, pp. 323-
336, Oct. 2002.

[34] S. Wilton and N. Jouppi, “An Enhanced Access and Cycle Time
Model for On-Chip Caches,” Technical Report 93/5, DEC Western
Research Laboratory, 1994.

[35] B. Agrawal and T. Sherwood, “Ternary CAM Power and Delay
Model: Extensions and Uses,” IEEE Trans. Very Large Scale
Integration Systems, vol. 16, no. 5, pp. 554-564, May 2008.

[36] B. Agrawal and T. Sherwood, “Modeling TCAM Power for Next
Generation Network Devices,” Proc. Int’l Symp. Performance
Analysis of Systems and Software (ISPASS ’06), pp. 120-129, 2006.

[37] H. Vandierendonck and K. De Bosschere, “XOR-Based Hash
Functions,” IEEE Trans. Computers, vol. 54, no. 7, pp. 800-812, July
2005.

[38] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in
the New Millennium,” IEEE Computer, vol. 33, no. 7, pp. 28-35,
July 2000.

[39] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-
structure for Computer System Modeling,” IEEE Computer, vol. 35,
no. 2, pp. 59-67, Feb. 2002.

[40] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Perfor-
mance: Building a Better Bloom Filter,” Proc. 14th Ann. European
Symp. Algorithms (ESA ’06), pp. 456-467, 2006.

[41] Cisco Catalyst 6500 Series Switches Data Sheet, http://www.
cisco.com/en/US/products/hw/switches/ps708/products_
data_sheets_list.html, 2012.

Salvatore Pontarelli received the master’s
degree in electronic engineering at the Univer-
sity of Bologna in 2000, and the PhD degree in
microelectronics and telecommunications from
the University of Rome Tor Vergata, in 2003.
Currently, he is with the Department of Electro-
nic Engineering at the same university. He has
worked with the National Research Council, the
Italian Space Agency, and the National Inter-
University Consortium for Telecommunications

and has been consultant for various Italian and European companies for
projects related to digital design and to fault tolerance in digital systems.
Since 2009, he has been working on the development and design of
FPGA-based methods for high-speed network intrusion detection
systems. His research interests include the development of highly
reliable systems for space applications, error-detection and correction
codes, fault detection and recovery for arithmetic circuits, use of post-
CMOS technologies (in particular quantum-dot cellular automata) for the
implementation of digital circuits at subnanometric integration scale.

Marco Ottavi (M’03-SM’10) received the PhD
degree in microelectronics and telecommunica-
tions engineering from the University of Rome,
“Tor Vergata,” Italy, in 2004. He is currently a
professor with the University of Rome “Tor
Vergata,” Italy, as the recipient of a “rientro dei
cervelli” Fellowship awarded by the Italian
Ministry of University and Research. Previously,
he was a senior design engineer with AMD in
Boxborough, Massachusetts, and held postdoc-

toral positions with Sandia National Labs in Albuquerque, New Mexico,
and with the Electrical Communication Engineering Department of
Northeastern University in Boston, Massachusetts. His research
interests include yield and reliability modeling, test, design for
tesatability, fault-tolerant architectures, and online testing and design
of nanoscale circuits and systems. In these fields, he published five book
chapters and more than 50 articles on archival journals and peer-
reviewed conferences. Since December 2011, he is the chair of COST
Action IC1103 “Manufacturable and Dependable Multicore Architectures
at Nanoscale.” He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1126 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

