842 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 7, JULY 2007

Transactions Briefs

Concurrent Error Detection in Reed—Solomon
Encoders and Decoders

G. C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano

Abstract—Reed-Solomon (RS) codes are widely used to identify and cor-
rect errors in transmission and storage systems. When RS codes are used
for high reliable systems, the designer should also take into account the oc-
currence of faults in the encoder and decoder subsystems. In this paper,
self-checking RS encoder and decoder architectures are presented. The RS
encoder architecture exploits some properties of the arithmetic operations
in GF(2™). These properties are related to the parity of the binary rep-
resentation of the elements of the Galois Field. In the RS decoder, the im-
plicit redundancy of the received codeword, under suitable assumptions
explained in this paper, allows implementing concurrent error detection
schemes useful for a wide range of different decoding algorithms with no
intervention on the decoder architecture. Moreover, performances in terms
of area and delay overhead for the proposed circuits are presented.

Index Terms—Error correction coding, fault tolerance, Reed—Solomon
codes.

I. INTRODUCTION

High reliable data transmission and storage systems frequently use
error correction codes (ECC) to protect data. By adding a certain grade
of redundancy these codes are able to detect and correct errors in the
coded information. In the design of high reliable electronics systems
both the Reed-Solomon (RS) encoder and decoder should be self
checking in order to avoid faults in these blocks which compromise
the reliability of the whole system. In fact, a fault in the encoder can
produce a noncorrect codeword, while a fault in the decoder can give a
wrong data word even if no errors occur in the codeword transmission.
Therefore, great attention must be paid to detect and recover faults
in the encoding and decoding circuitry. Nowadays, the most used
error correcting codes are the RS codes, based on the properties of the
finite field arithmetic. In particular, finite fields with 2™ elements are
suitable for digital implementations due to the isomorphism between
the addition, performed modulo 2, and the XOR operation between the
bits representing the elements of the field.

The use of the XOR operation in addition and multiplication allows
to use parity check-based strategies to check the presence of faults in
the RS encoder, while the implicit redundancy in the codeword is used
either for correct erroneous data and for detect faults inside the decoder
block.

This paper is organized as follows. In Section II, a short background
on RS codes is given, while Section III summarizes the main results of
past works on this topic and describes the proposed methodology. In
Section IV, the architecture of the proposed self-checking RS encoder
is presented while Section V shows concurrent error detection (CED)
schemes for the RS decoder. Conclusions are drawn in Section VI.

Manuscript received June 8, 2006.

The authors are with the Department of Electronic Engineering, University
of Rome “Tor Vergata”, 00133 Rome, Italy (e-mail: pontarelli@ing.uniroma?2.it;
salsano@ing.uniroma2.it; marco.re@ieee.org; g.cardarilli@ieee.org).

Digital Object Identifier 10.1109/TVLSI.2007.899241

II. RS CODES BACKGROUND

In this section, a short background on RS codes is outlined. In [1],
more information about finite fields and RS codes are provided. The
finite fields used in digital implementations are in the form GF(2™),
where m represents the number of bits of a symbol to be coded. An el-
ement a(x) € GF(2™) is a polynomial with coefficients a; € {0,1}
and can be seen as a symbol of m bits @ = @,—1,...,a1ag. The ad-
dition of two elements a(x) and b(z) € GF(2™) is the sum modulo 2
of the coefficients a; and b;, i.e., is the bitwise XOR of the two symbols
@ and b. The multiplication of two elements a(x) and b(x) € GF(2™)
requires the multiplication of the two polynomials followed by the re-
duction modulo i(x), where ¢ () is an irreducible polynomial of degree
m. Multiplication can be implemented as an AND-XOR network, as ex-
plained in [2].

The RS(n, k) code is defined by representing the data word symbols
as elements of the field GF(2™) and the overall data word is treated
as a polynomial d(z) of degree k — 1 with coefficient in GF(2™).
The RS codeword is then generated by using the generator polynomial
g(x). All valid codewords are exactly divisible by g(«). The general
form of g(z) is

() = (z+a) (@ +a ™)z +a ™))

where 2t = n — k and « is a primitive element of the field, i.e., V3 €
GF(2™) —{0}3i € N|o' = 5.

The codewords of a separable RS(n, k) code correspond to the poly-
nomial ¢(x) with degree n — 1 that can be generated by using the fol-
lowing formulas:

elw) = d(x) - 2" 7"+ p(a) @
p(x) = d(x)- 2" * mod g(x) 3)

where p(x) is a polynomial with degree less than n — & representing
the parity symbols. In practice, the encoder takes k data symbols and
adds 2t parity symbols obtaining a n symbol codeword. The 2t parity
symbols allows the correction of up to ¢ symbols containing errors in
a codeword.

Defining the Hamming distance of two polynomials a(x) and b(x)
of degree n as the number of coefficients of the same degree that are
different, i.e., H(a(x),b(x)) = #{i < n|a; # b;}, and the Hamming
weight W (a(x)) as the number of non-zero coefficients of a(x), i.e.,
W(a(xz)) = #{i < n|a; # 0} itis easy to prove that H (a(z), b(x)) =
W(a(z) — b(z)).InaRS(n, k) code the Hamming distance between
two codewords is n — k. After the transmission of the coded data on
a noisy channel the decoder receives as input a polynomial ¢(x) =
c(x)+e(x), where e(x) is the error polynomial. The RS decoder iden-
tifies the position and magnitude of up to ¢ errors and it is able to correct
them. In other words the decoder is able to identify the e(x) polynomial
if the Hamming weight W (e(z)) is not greater than ¢. The decoding
algorithm provides as output the codeword that is the only codeword
having an Hamming distance not greater than ¢ from the received poly-
nomial ¢(z).

III. METHODOLOGY AND PREVIOUS WORK

In this section, the motivations of the design methodology used for
the proposed implementations are described starting from an overview
of the presented literature.

1063-8210/$25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:21:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 7, JULY 2007 843

In [3], a radiation-tolerant RS encoder hardened against space radi-
ation effects through circuit and layout techniques is presented. In [4]
and [5], single and multiple parity bits schemes are presented to check
the correctness of addition and multiplication in polynomial basis rep-
resentation of finite fields.

In [6] and [7], the authors extend the techniques presented in [4]
and [5] to detect faults occurring in the RS encoder, achieving the self-
checking property for the RS encoder implementation. Moreover, in
[8] and [9], a method to obtain CED circuits for finite field multipliers
and inverters has been proposed.

Since both the RS encoder and decoder are based on GF(2™) ad-
dition, multiplication, and inversion, their self-checking implementa-
tion can be obtained by using CED implementations of these basic
arithmetic operations. Moreover, in [10], a self-checking algorithm for
solving the key equation (that is a part of the overall decoding al-
gorithm) has been introduced. Exploiting the algorithm proposed in
[10] and substituting the elementary operations with the corresponding
CED implementation for the other parts of the decoding algorithm a
self-checking decoder can been implemented. This approach can be
used for the encoder, that use only addition and constant multiplication
and is illustrated in the following subsection, but it is unusable for the
decoder as described later in this paper and a specific technique will be
explained in the successive section.

A. Characteristics of the RS Encoder

In order to design a self-checking RS encoder by using the multi-
pliers proposed in [4], [5], [8], and [9], each fault inside these blocks
should be correctly detected. This detection is not ensured for the entire
set of stuck-at faults (neither for the SEU fault set) because no details
on the logical net-list implementing the multipliers are given in those
papers. In fact, the authors present an estimation of the probability of
undetected faults different from zero. To overcome this limitation, ob-
taining a total fault coverage for the single stuck-at faults the solution
proposed in [6] is used. First of all, the characteristics of the arithmetic
operations in GF(2"") used in the RS encoder are analyzed with re-
spect to the parity of the binary representation of the operands. The
following two operations are considered:

* Parity of the addition in GF(2™);

* Parity of the constant multiplication in GF(2™).

Defining the parity P(a(x)) of a symbol as the XOR of the coefficients
ai, and taking into account that in GF(2™) the addition operation is
realized by the XOR of the bits having the same index, the following
property can be easily demonstrated:

Pla(x) +b(x)) = Pla(z)) & P(b(x)). O]

Taking into account that in the RS encoder the polynomial used to en-
code the data is constant, the polynomial multiplication is implemented
by the multiplication for the constant g;, where g; are the coefficients of
the generator polynomial g(x). The constant multiplier is implemented
by using an suitable network of XOR gates. This allows to exploit the
concept of “odd-observability” proposed in [11]. The parity P(c(z))
of the result can be evaluated as

P(c) = @a 5)
i€A

where A is the set of inputs that are evaluated an odd number of times.
For the input bits evaluated an even number of times additional outputs
are added.

B. Characteristics of the RS Decoder

The design of the self-checking decoder starting by the CED imple-
mentation of the arithmetic blocks and using the self-checking algo-

rithm given in [10] for solving the key equation presents the following
drawbacks.

1) The internal structure of the decoder must be modified substi-
tuting the elementary operations with the corresponding CED
ones. Therefore, the decoder performances in terms of maximum
operating frequency, area occupation, and power consumption
can be very different with respect to the nonself-checking imple-
mentation.

2) The self-checking implementation is strongly dependent from the
chosen decoder architecture (e.g., Berlekamp—Massey algorithm
or the modified Euclidean algorithm [1]).

3) A good knowledge of the finite field arithmetic is essential for the
implementation of GF(2™) arithmetic blocks.

In the solution presented in this paper, differently from the previ-
ously discussed approaches, the implementation of the self-checking
RS decoder is based on the use of a standard RS decoder (see IP ven-
dors [12] and [13] for example) completed by adding suitable hardware
blocks to check its functionality. In this way, the proposed method can
be directly used for a wide range of different decoder algorithms en-
abling the use of important design concepts such as reusability.

The proposed technique starts from the following two main proper-
ties of the fault-free decoder.

Property 1: The decoder output is always a codeword.

Property 2: The Hamming weight of the error polynomial is not
greater than 7.

If a fault occurs inside the decoder the previously outlined obser-
vation is able to detect the occurrence of the fault. When the fault is
activated, i.e., the output is different from the correct one due to the
presence of the fault , the following two cases occur.

* The first case the decoder gives as output a noncodeword, and this
case can be detected by property 1. This is the most probable case
because the decoder computes the error polynomial and obtains
the output codeword by calculating c(z) = #(x) + e(x), where
¢(x) is the received polynomial.

* If the output of the faulty decoder is a wrong codeword the detec-
tion of this fault is easily performed by evaluating the Hamming
weight of the error polynomial e(x).

The error polynomial can be provided by the encoder as an additional
output or can be evaluated by comparing the received polynomial and
the provided output ¢(x).

If one of the two properties is not respected a fault inside the
decoder is detected, while if all the observations are satisfied we can
detect that no faults are activated inside the decoder. This approach
is completely independent by the assumed fault set and it is based
only on the assumption that the fault-free behavior of the decoder
provides always a codeword as output. This assumption is valid
for a wide range of decoder architectures. For some decoders that
are able to perform a miscorrection detection for some received
polynomials with more than # errors suitable modification of our
proposed method could be done.

IV. SELF-CHECKING RS ENCODER

The implementation of RS encoders are usually based on an LFSR,
which implements the polynomials division over the finite field [1].

In Fig. 1, the implementation of an RS encoder is shown. The ad-
ditions and multiplications are performed on GF(2™) and g; are the
coefficients of the generator polynomial g(x). The RS encoder archi-
tecture is composed by slice blocks containing a constant multiplier,
an adder, and a register (see shaded block in Fig. 1). The number of
slices to implement for an RS(n, k) code is n — k. The self-checking
implementation requires the insertion of some parity prediction blocks
and a parity checker. The correctness of each slice is checked by using
the architecture shown in Fig. 2.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:21:55 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 7, JULY 2007

0 N
\\//

@ @

BESH) I aonr

Data IN

Data out

Fig. 1. RS encoder.

Fm PFin
S
copies Pa-rity
S Prediction
]
g S

Ain ﬁ/_’(_B v Lo 7L’ Aout
P D+_L>+:)—> Put

Fig. 2. Self-checking slice.

TABLE I
AREA OF THE BUILDING BLOCKS

LUT | # LUT without | # FF
sharing

adder 8 - 0
20_mult 8 8 0
gl _mult 13 16 0
22_mult 9 10 0
23_mult 11 14 0
slice* 18 20 8
Additional Logic* 4 - 1
Parity Checker 12 - 0

(*) mean value

The input and output signals to the slice are as follows.

e A;, is the registered output of the previous slice.

e P, is the registered parity of the previous slice.

e Fi, is the feed-back of the LFSR.

e PF;, is the parity of the feed-back input.

e A,y is the result of the multiplication and addition operation.

e P, is the predicted parity of the result.

The parity prediction block is implemented by using (5). It must
be noticed that some constrains in the implementation of the constant
multiplier must be added (see [11]) in order to avoid interference be-
tween different outputs when a fault occurs. These interferences are
due to the sharing of intermediate results between different outputs and,
therefore, can be avoided by using networks with fan-out equal to one:
considering the field-programmable gate array (FPGA) implementa-
tion of constant multiplier, this constrain is not a serious drawback. In
fact, each output bit is computed by implementing a XOR network re-
quiring a very limited number of LUTs: for example, considering the
field GF(2*) and an FPGA based on four-inputs LUTS, three LUT’s in
the worst case are required. Table I reports the overhead introduced for
different constant g; without resource sharing in the case of GF(2°%).

The predicted parity bit and the output of each slice are evaluated
by the parity checker block as shown in Fig. 3, and an error indicator
informs if a difference between the predicted parity bit and the parity
of the m slice outputs is detected.

Voo i {

—s .o SLICE | & SLICE | , SLICE | s
i-1 i itl
8 8 8
Parity Checker

| Error Indicat

Fig. 3. Self-checking RS encoder.

The parity checker block checks if the parity of the inputs is even or
odd.

The self checking implementation of the parity checker is realized
with a two-rail circuit. The two outputs, are each equal to the parity of
one of the two disjoint subsets of the inputs, as proposed in [14].

The fault-free behavior of the checker, when a correct set of inputs is
provided (i.e., no faults occur in the slices) is the following: the output
codes 01 or 10 are generated for an odd parity checker or the output
codes 00 or 11 for an even parity checker.

If the checker receive as input an erroneous codeword (i.e., a fault
occurs in a slice) the checker provides the output codes 11 or 00 for
an odd parity checker or the output codes 01 or 10 for an even parity
checker.

Also, if a fault occurs in the checker the outputs provided are 11 or
00 for an odd parity checker or the output codes 01 or 10 for an even
parity checker.

This considerations guarantee the self-checking property of the
checker. It can be noticed that, due to the LFSR-based structure of the
RS encoder, there are no control state machines to be protected against
faults. Therefore, the use of the described self-checking arithmetic
structures allows to check the entire RS encoder. The evaluations in
terms of area and delay of this structure has been carried out by using
a Xilinx Virtex II FPGA as the target device and the design flow has
been performed by using the Xilinx ISE foundation framework.

Table I reports the area of each of the blocks described in this section.
The adder is implemented by using one LUT for each output, while
the area of the constant multipliers and of the parity prediction block
depends by the coefficients g;.

In Table I, the row named “additional logic” represents the logic
added to the slice in order to predict the parity bit. The number of LUTSs
required to implement the parity checker depends by the number of
slices of the encoder, i.e., the number » — k of check bits of the RS
code.

In particular, implementing the parity checker as a network of XOR
gates, the number of LUTs is [((n — k)(m + 1))/(3)].

Starting from the result shown in Table I, the area overhead has been
computed for the given case. The overhead 50%, and it is independent
from the number of check symbols (n — k). In fact, for each check
symbol (m = 8) the overhead for the single slice is about six LUTs,
plus the overhead due to the parity checker (three LUTs). The equation
describing the overhead is

(n— k) (6+3)

(n—k) =18 = 50%.

The characterization of the critical path is different for each slice,
depending on the complexity of the constant multiplier g;. In the worst
case, the constant multiplier g; implemented by using an eight XOR net-
work requires three LUTs, therefore, in the worst case path five LUTs
are crossed.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:21:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 7, JULY 2007

c(x) c(x)

>~

845

RS decoder e()

Codeword
Checker

Error Detection

‘ >

Shifter Register

e(x)

Fig. 4. CED scheme of the RS decoder.

In order to compute the critical path for the overall self checking en-
coder architecture, the following additional signal paths must be con-
sidered:

» path crossing the parity prediction block that is comparable with

the path of the worst-case constant multiplier;

* path crossing the parity checker. This path depends by the number
of bits provided as input to the checker. In fact, the number of
required LUTs is equal to the number of levels of the four inputs
XOR network, that is [log,(n — k)(m + 1)].

The number of levels of the two-rail parity checker increases very
slowly with the growth of the number of check symbols, and therefore,
do not represent a problem for the maximum frequency of the self-
checking decoder.

V. CONCURRENT ERROR DETECTION SCHEME OF THE RS DECODER

In Fig. 4, the CED implementation of the RS decoder is shown. Its
main blocks are as follows.

¢ RS decoder, i.e., the block to be checked.

* An optional error polynomial recovery block (the shaded block
shown in Fig. 4). This block is needed if the RS decoder does not
provide at the output the error polynomial coefficients.

* Hamming weight counter, that checks the number of nonzero co-
efficients of the error polynomial.

* Codeword checker, that checks if the output data of the RS decoder
form a correct codeword.

¢ Error detection block that take as inputs the output of the Ham-
ming weight counter and of the codeword checker and provides
an error detection signal if a fault in the RS decoder has been de-
tected.

The RS decoder can be considered as a black box performing an
algorithm for the error detection and correction of the input data (the
coefficients of the received data forming the polynomial ¢ ().

The error polynomial recovery block is composed by a shifter reg-
ister of length L (the latency of the decoder) and by a GF(2™) adder
having as operands the coefficients of ¢(x) and ¢(x).

The Hamming weight counter is composed by the following:

1) a comparator indicating (at each clock cycle) if the e(x) coeffi-

cients are zero;
2) a counter that takes into account the number of nonzero coeffi-
cients;

3) a comparator between the counter output and ¢ that is the max-
imum allowed number of nonzero elements.

The codeword checker block checks if the reconstructed c(z) is a
codeword, i.e., if it is exactly divisible for the generator polynomial
g(z). The following two implementations of this block are proposed.

Implementation 1: It is based on the computation of the remainder
of the polynomial division between c¢(x) and g(x). If all the coeffi-
cients of the remainder polynomial are zero then the polynomial ¢(x)
is a correct codeword. The remainder of the division by g(z) is exactly
the function of the systematic RS encoder. Therefore, a systematic RS
encoder with the same g () polynomial of the decoder is used if () is
a codeword. Faults in the decoder can be detected ignoring either g(x)
and also ignoring how the operation in GF(2™) is performed. We only

Hamming Weight
Counter

need to reuse the same RS encoder used to create the codeword for
the computation of the remainder ¢(x) obtained from the decoder. The
drawback of this implementation is the additional latency introduced by
the RS encoder, that is n — k clock cycles. This latency must be consid-
ered by the error detection block that must wait n — % clock cycles to
check the two properties defined in Section III. The area occupation of
the RS encoder is smaller than the area occupation of the decoder (see,
e.g., [12] and [13]), therefore, the overhead introduced by this block is
about 15% of the decoder area.

Implementation 2: The codeword checker block is based on the
so-called syndrome calculation. This operation is the first to be per-
formed in the decoder, therefore, conceptually this approach implies a
partial duplication of the RS decoder and implies the knowledge of the
used Galois field and the roots of g(). The syndrome calculation imply
the evaluation of the received polynomial z(x) for the values of z in
the set A, with A = {a*T7|0 < j < 2t},i.e., A is the set of the roots
of g(x). The received polynomial ¢(x) is exactly divisible for g(x) if
and only if it is exactly divisible for all the monomials (z — a'*7),
where « is a root of g(«). The polynomial is divisible by (2 — a'*)
if @(a**7) is zero. Therefore, the received polynomial is a codeword if
and only if all the computed syndromes are zero. The syndromes com-
putation block is composed by a GF(2™) constant multiplier, an adder
and an m-bit register. The output of this block is valid one clock cycle
later than the computation of the last coefficient of the polynomial. The
area occupation of the syndrome calculation block is equivalent to the
encoder area occupation. In fact, in both cases we need n — & blocks
composed by an adder, a constant multiplier and an m-bit register.

The main difference between implementation 1 and 2 is the latency
of the codeword checker block. The error detection block takes as in-
puts the outputs of the Hamming weight counter and the outputs of the
codeword checker. Its implementation depends from the chosen im-
plementation of the codeword checker. If we use implementation 1 the
error detection block must delay the output of the Hamming weight
counter for n — k clock cycles and checks if all the coefficients of
the remainder polynomial are zero. On the other hand, if we use the
syndromes calculation block the inputs are the computed syndromes
and the error detection block checks if all the received symbols are
zero. The additional blocks used to detect faults inside the decoder
are susceptible to faults and, therefore, their implementation must as-
sure the self-checking property, in order to face the age old question
of “who checks the checker.” For the codeword checker and the error
polinomiyal generator blocks only register and GF(2™) addition and
constant multiplication are used and, therefore, the same considera-
tion of Section IV can be used to obtain the self-checking property of
these blocks. For the counters and the comparator used in the Hamming
weight counter and error detection blocks, many efficient techniques
can be found in literature (see, e.g., [15]).

VI. CONCLUSION

In this paper self-checking architectures for an RS encoder and de-
coder are described. The parity properties of the binary representa-
tion of the elements of GF(2™) has been studied and a method for
a self-checking implementation of the arithmetic structures used in the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:21:55 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 7, JULY 2007

RS encoder has been proposed. The problems related to the presence of
undetected faults in parity check-based schemes has been faced by im-
posing some constrains in the logical net-list implementation for the
constant multiplier. Evaluations of area and delay overhead for the
self-checking RS encoder has been provided. For the self-checking
RS decoder two main properties of the fault free decoder have been
identified and used to detect faults inside the decoder. The proposed
method can be used for a wide range of algorithm implementing the
decoder function. Some concurrent error detection schemes have been
explained in the paper and some evaluations of area overhead has been
provided. Our method is nonintrusive, i.e., the decoder architecture is
not modified. This fact enables the use of the reusability concept, for
the design of very complex digital systems.

REFERENCES

[1] R. E. Blahut, Theory and Practice of Error Control Codes.
MA: Addison-Wesley Publishing Company, 1983.

[2] A. R. Masoleh and M. A. Hasan, “Low complexity bit parallel archi-
tectures for polynomial basis multiplication over GF(2m), computers,”
IEEE Trans. Comput., vol. 53, no. 8, pp. 945-959, Aug. 2004.

[3] J. Gambles, L. Miles, J. Has, W. Smith, and S. Whitaker, “An ultra-low-
power, radiation-tolerant reed solomon encoder for space applications,”
in Proc. IEEE Custom Integr. Circuits Conf., 2003, pp. 631-634.

[4] A. R. Masoleh and M. A. Hasan, “Error Detection in Polynomial
Basis Multipliers over Binary Extension Fields,” in Lecture Notes in
Computer Science. New York: Springer-Verlag, 2003, vol. 2523, pp.
515-528.

[5] S. B. Sarmadi and M. A. Hasan, “Concurrent error detection of poly-
nomial basis multiplication over extension fields using a multiple-bit
parity scheme,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst., 2005, pp. 102-110.

[6] G.C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano, “Design of a self
checking reed solomon encoder,” in Proc. 11th IEEE Int. On-Line Test.
Symp. (IOLTS’05), 2005, pp. 201-202.

[7] G.C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano, “A self checking
Reed Solomon encoder: Design and analysis,” in Proc. IEEE Int. Symp.
Defect Fault Tolerance VLSI Syst., 2005, pp. 111-119.

[8] M. Gossel, S. Fenn, and D. Taylor, “On-line error detection for finite
field multipliers,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst., 1997, pp. 307-311.

[9] Y.-C. Chuang and C.-W. Wu, “On-line error detection schemes for a
systolic finite-field inverter,” in Proc. 7th Asian Test Symp., 1998, pp.
301-305.

[10] 1. M. Boyarinov, “Self-checking algorithm of solving the key equation,”
in Proc. IEEE Int. Symp. Inf. Theory, 1998, p. 292.

[11] C. Bolchini, F. Salice, and D. Sciuto, “A novel methodology for de-
signing TSC networks based on the parity bit code,” in Proc. Eur. De-
sign Test Conf., 1997, pp. 440-444.

[12] Altera Corp., SanJose, CA, “Altera Reed-Solomon compiler user guide

Reading,

3.3.3,” 2006.
[13] Xilinx, San Jose, CA, “Xilinx logicore Reed-Solomon decoder v5.1,”
2006.

[14] D. Nikolos, “Design techniques for testable embedded error checkers,
computers,” Computer, vol. 23, no. 7, pp. 8488, Jul. 1990.

[15] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design. En-
glewood Cliffs, NJ: Prentice-Hall, 1985.

A Low-Power Multiplier With the Spurious
Power Suppression Technique

Kuan-Hung Chen and Yuan-Sun Chu

Abstract—This paper provides the experience of applying an advanced
version of our former spurious power suppression technique (SPST) on
multipliers for high-speed and low-power purposes. To filter out the use-
less switching power, there are two approaches, i.e., using registers and
using AND gates, to assert the data signals of multipliers after the data
transition. The SPST has been applied on both the modified Booth de-
coder and the compression tree of multipliers to enlarge the power reduc-
tion. The simulation results show that the SPST implementation with AND
gates owns an extremely high flexibility on adjusting the data asserting time
which not only facilitates the robustness of SPST but also leads to a 40%
speed improvement. Adopting a 0.18-«m CMOS technology, the proposed
SPST-equipped multiplier dissipates only 0.0121 mW per MHz in H.264
texture coding applications, and obtains a 40% power reduction.

Index Terms—H.264, low-power, multiplier, spurious power suppression
technique (SPST).

I. INTRODUCTION

Lowering down the power consumption and enhancing the pro-
cessing performance of the circuit designs are undoubtedly the two
important design challenges of wireless multimedia and digital signal
processor (DSP) applications, in which multiplications are frequently
used for key computations, such as fast Fourier transform (FFT),
discrete cosine transform (DCT), quantization, and filtering. To save
significant power consumption of a VLSI design, it is a good direction
to reduce its dynamic power that is the major part of total power
dissipation.

The designs [1]-[7] are existing works that reduce the dynamic
power consumption by minimizing the switched capacitance. The
design [1] proposes a concept called partially guarded computation
(PGC), which divides the arithmetic units, e.g., adders, and multipliers,
into two parts, and turns off the unused part to minimize the power
consumption. The reported results show that the PGC can reduce
power consumption by 10% to 44% in an array multiplier with 30%
to 36% area overheads in speech related applications. Design [2]
proposes a 32-bit 2’s complement adder equipping a master-stage
flip-flop and a slave-stage flip-flop for both operands of the adder, a
dynamic-range determination (DRD) unit, and a sign-extension unit.
This design tends to reduce the power dissipation of conventional
adders for multimedia applications. Additionally, design [3] presents
a multiplier using the DRD unit to select the input operand with a
smaller effective dynamic range to yield the Booth codes. The direct
report of [3] shows that the multiplier can save over 30% power dis-
sipation than conventional ones. Design [4] incorporates a technique
for glitching power minimization by replacing some existing gates
with functionally equivalent ones that can be “frozen” by asserting a
control signal. This technique can be applied to replace layout-level
descriptions and guarantees predictable results. However, it can only
achieve savings of 6.3% in total power dissipation since it operates in

Manuscript received October 5, 2006; revised March 1, 2007. This work was
supported in part by the National Science Council of the Republic of China,
Taiwan, R.O.C., under Contract NSC 95-2221-E-194-093-MY2.

K.-H. Chen is with Feng-Chia University, Tai-Chung 40724, Taiwan, R.O.C.
(e-mail: kuanhung @fcu.edu.tw).

Y.-S. Chu is with the National Chung-Cheng University, Chia-yi 62102,
Taiwan, R.O.C. (e-mail: chu@ece.ccu.edu.tw).

Digital Object Identifier 10.1109/TVLSI1.2007.899242

1063-8210/$25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:21:55 UTC from IEEE Xplore. Restrictions apply.

