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Abstract—In this paper, a methodology for the development of fault-tolerant adders based on the Radix 2 Signed Digit (SD)
representation is presented. The use of a number representation characterized by a carry propagation confined to neighbor digits

implies interesting advantages in terms of error detection, fault localization, and repair. Errors caused by faults belonging to a
considered stuck-at fault set can be detected by a parity-based technique. In fact, a carry-free adder preserving the parity of the

augends can be implemented allowing fault detection by using a parity checker. Regarding fault localization, the “carry-free” property of
the adder ensures the confinement of the error due to a permanent fault to only few digits. The detection of the faulty digit has been

obtained by using a recomputation with shifted operands method. Finally, after the fault localization, graceful degradation of the system
intended as the reduction of the performances versus a correct output computation can be obtained by using two different procedures.

The first one allows obtaining the correct output by recomputing the result performing two different shift operations and using the
intersection of the obtained results to recover the correct output, while the second one is based on a reduced dynamic range approach,

which allows us to obtain the result in only one step, but with fewer output digits.

Index Terms—Fault tolerance, high-speed arithmetic, error checking.

!

1 INTRODUCTION

THE increasing scaling rate of the microelectronic tech-
nologies observed in recent years pushes for the use of

fault-tolerant techniques, traditionally used in high relia-
bility applications such as aerospace and avionics and also
in commercial applications. For example, the effects of
neutrons at sea levels when subnanometric microelectronics
technologies are used seems to be not negligible. In fact, as
semiconductor technology advances, the amount of charge
that is stored in specific nodes in the circuitry continues to
decline [1]. Many vendors, such as Xilinx, are starting to
furnish special tools and architectures to face these
problems in the FPGA case [2]. Due to these facts, since
adders are essential building blocks in all data processing
systems, the design of arithmetic structures with online
error detection and correction capabilities represents an
important research topic. In the literature, a number of self-
checking adder implementations have been proposed, such
as based on residue codes [3], [4], parity codes, [5], [6], [7],
or Berger codes [8]. Other error detection techniques are
based on recomputing with shifted [9] and/or rotated
operands, as shown in [10], [11].

Other solutions based on carry-free self-checking adders

have been proposed in the literature such as in [12], [13]. In

particular, in [12], an inherent parity coding scheme to code

the digits is proposed, while, in [13], a one out of three
scheme is investigated. Besides, not many works propose
adders which provide combined error detection and
correction capabilities. The most widely applied techniques
to obtain error correction in adder circuits are based on
time-redundancy [11] or on the residue number system
representation [14], [15].

The objective of this paper is the design of a self-checking
adder architecture by combining parity checking techniques
and SD number representation. The parity coding scheme
proposed in this paper [16] allows implementing a self-
checking adder with fault localization and graceful degra-
dation capabilities. The main idea is that, in SD representa-
tion, the carry propagation is limited only to the neighbor
digits, allowing us to set up a procedure to locate the faulty
digits by means of ad hoc algorithms. Moreover, the locality
of the carry propagation allows us to obtain graceful
degradation. The paper is organized as follows: In
Section 2, a brief overview of the SD arithmetic is reported,
while, in Section 3, the chosen digit coding is reported and
discussed with respect to fault detection. In Section 4, the
self-checking adder architecture is proposed, together with
an analysis of its implementation overhead. Section 5
reports the procedure to obtain fault localization and shows
the possible graceful degradation approaches. Finally, in
Section 6, the conclusions are drawn.

2 BACKGROUND

The general theory and application of the SD representation
is reported in [17], [18]. In this section, a brief illustration of
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its basic theory is shown. In a radix r SD representation, a
number x can be represented as

x ¼
Xn"1

i¼0

xir
I ; ð1Þ

where the digit set is xi 2 f"a; . . . ;"1; 0; 1; . . . ; ag, with
dr"1

2 e % a % r" 1.
The original motivation for introducing SD representa-

tion was to eliminate the carry propagation chains in
addition and subtraction [19]. In fact, given two operands x
and y, the addition operation can be split into the two
operations

wi ¼ xi þ yi " rci; ð2Þ

zi ¼ wi þ ci"1; ð3Þ

where

ci ¼
1 if ðxi þ yiÞ ' a

"1 if ðxi þ yiÞ % "a
0 if jxi þ yij < a;

8
<

:

with wi being an auxiliary variable. For r ¼ 2, there is only
one possible digit set: f"1; 0; 1g, i.e., a must be equal to 1.
Even if the condition a ' dr"1

2 e cannot be satisfied, the sum
can still be performed without carry propagation by using
the modified rules for radix 2 SD addition proposed in [20]
and reported in Table 1.

This representation allows using an architecture such as
described in [17], [16] to implement a carry-free adder. The
main elementsof theadder are the so-calledblocksADD1and
ADD2, where ADD1 implements (2), providing the inter-
mediate outputs ci and wi, while ADD2 implements (3).

3 PARITY IN THE CARRY-FREE SUM

The radix-2 SD digit xi can assume three values, hence its
binary representation requires two bits. A convenient
coding choice is considering digit 0 represented by either
bits 00 or 11 and digit 1 and -1 represented by bits 01 and 10,
respectively. This coding has two advantages:

1. Conversion from binary to SD representation is
straightforward as the LSB has the same value in

both representations while the MSB is put to 0 in the
conversion.

2. With the proposed coding, only the MSBs of
ai"1; bi"1 are necessary and the ADD1 circuit can be
implemented with 6 bits of input instead of 8. In fact,
the function performed by ADD1 on ai; bi needs to
evaluate the sign of the operands ai"1; bi"1 in order
to determine the outputs of ADD1.

As in a conventional number representation [7], with the SD
representation, the parity properties of the arithmetic
operations can also be used to check the correctness of
arithmetic results. To define the parity of a digit, we refer to
its binary coding. Thus we define the parity PðaiÞ as the
XOR of the bits representing the digit ai and the parity of a
SD number P(A) as the XOR of the parity PðaiÞ of all digits
ai. Starting from these definitions for the parity of an
SD number and assuming that P(C) and P(W) are the
parities of carry and partial sum and P(Z) is the parity of the
result, the following property holds:

Property 1.

P ðZÞ ¼ P ðCÞ ( P ðW Þ: ð4Þ

In fact, evaluating the parity of wi and ci"1 with the
chosen coding, we have that P ðziÞ ¼ P ðwiÞ ( P ðci"1Þ for
any possible combination of wi and ci"1 [16]. Since the
property is true for every zi, it is true also for Z. In fact, due
to the associative property of the XOR operator, the
following statement holds:

P ðZÞ ¼
Mn"1

i¼0

P ðziÞ ¼
Mn"1

i¼0

ðP ðwiÞ ( P ðci"1ÞÞ

¼
Mn"1

i¼0

P ðwiÞ (
Mn"1

i¼0

P ðci"1Þ ¼ P ðWÞ ( P ðCÞ:
ð5Þ

This demonstrates Property 1.
With a similar procedure, the following Property 2 can

be demonstrated [16]:

Property 2.

P ðW Þ ¼ P ðAÞ ( P ðBÞ: ð6Þ

In fact, for any possible combination of ai and bi, we have
P ðwiÞ ¼ P ðaiÞ ( P ðbiÞ.

4 SELF-CHECKING IMPLEMENTATION OF THE

SD ADDER

In this section, the self-checking implementation of the
SD adder is presented. The implementation results have
been obtained by using Synopsys Design Compiler [21] and
the standard cell library provided by Mississippi State
University [22]. The architecture of the self-checking adder
is shown in Fig. 1 and it is composed of the following
blocks:

1. Parity Prediction, generates the value of P ðCÞ;
2. Error Indicator 1, checks (6) and issues an error

signal in case of a mismatch;
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3. Error Indicator 2, checks (4) and issues an error
signal in case of a mismatch;

in addition to the standard ADD1 and ADD2 blocks used to
implement an SD adder.

The Parity Prediction block is implemented by
performing the XOR operation on all P ðciÞ. The
computation of ci (and then of its parity) depends
on the value of six variables. The Boolean function
P ðciÞ ¼ f ½aið1Þ; aið0Þ; bið1Þ; bið0Þ; ai"1ð1Þ; bi"1ð1Þ* for comput-
ing P ðciÞ has been obtained from Table 1. To detect a fault
using a parity checker, we must avoid having an erroneous
result !xixi that has the same parity as the correct one xi. With
the chosen coding scheme, this event occurs only if the
result xi changes from -1 (01) to 1 (10) or vice versa. It can be
noticed that the event of a change of the binary representa-
tion from 00 to 11 or vice versa does not introduce an error
in the output value as 00 and 11 represent the same value 0.
Moreover, with the chosen coding, the stuck-at in the
input/output of a block can only change the value of the
input digit from 0 to +1 or vice versa. The assumption that
at least one of the parities of W and C changes when a fault
occurs allows us to detect the fault by implementing (4) and
(6). This assumption can be guaranteed with a suitable
implementation of the blocks ADD1 and ADD2. In fact, the
effect of faults inside the blocks ADD1 and ADD2 is
strongly technology-dependent and, therefore, the standard
cell implementation must be correctly analyzed to predict
the behavior of these blocks in case of faults. First of all, it
can be noticed that a fault inside an ADD1 or ADD2 block
can modify more than one bit of the same digit and, in
particular, can modify the value of a digit from -1 to 1 or
vice versa. This case must be avoided because the parity of 1
and -1 is the same and, consequently, this kind of error
cannot be detected by using a parity checker. This case
occurs when a fault affects a logic cell with a fan-out greater
than one.

In the literature [23], [24], different results on obtaining
parity checking capability for circuits with logic resource
sharing have been presented. Starting from these results,
some simple considerations can be made. For the blocks

ADD1 and ADD2, the resource sharing for the different bits
of the same digit has been avoided. For the ADD1 block,
this choice implies that the block must be split into two
blocks, one providing the MSB of ci and wi, the other
providing the LSB of ci and wi. The resource sharing is
allowed inside each block, while it is not allowed between
different blocks. With this choice, a fault inside one of the
two blocks composing ADD1 can change the parity of ci, of
wi, or of both the digits and therefore can always be
detected by the parity checker. The ADD2 block provides
only the digit zi; therefore, it is synthesized as two
independent blocks providing the MSB and the LSB of zi.

To evaluate the introduced area overhead, Synopsys
Design Compiler has been used for the synthesis and the
results are reported in Table 2.

To avoid the occurrence of undetectable faults, ADD1
and ADD2 blocks have been synthesized by using partial
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Fig. 1. Self-checking adder implementation.
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sharing. This technique introduces an overhead on nine
logic cells with respect to a non-fault-tolerant implementa-
tion. Besides, Error Indicator 1 and Error Indicator 2 are
implemented as a two-rail parity checker, while XOR trees
are used to generate P ðCÞ, P ðZÞ, and P ðWÞ. From the
synthesis results, an N digits adder without redundancy
has an area occupation in terms of logic cells of 34N, while,
for the self-checking adder, we have 55N-1 logic cells.
Therefore, the overhead introduced is smaller than 60 per-
cent of the adder area. A comparison with the results
obtained with the self-checking adders given in [7] and
assuming a Carry Lookahead structure as proposed in [25]
is reported in Table 3.

In this table, the first row reports the area occupation of
the considered adders without self-checking capabilities as
a function of the number of digits N, while the second row
reports the required computation time. The area occupation
of the self-checking SD adder increases linearly, while, in
the carry lookahead case, it increases as N log2N ; therefore,
for a high number of digits (N > 16) the area occupation of
the two solutions becomes comparable, while the timing
performances of the SD adder are always better.

5 FAULT LOCALIZATION PROCEDURE

In this section, the fault localization procedure for the self-
checking SD adder is illustrated. It is based on the
recomputation with shifted operands method presented in
[9]. To improve the clarity of the exposition without loss of
generality, we take as an example an 8-digit adder. To
correctly localize the faults inside the SD adder, we must
divide the faults into three types, depending on the number
of outputs affected by the fault. We remark that this
classification depends on the implementation described in
the previous section. In fact, each fault can affect a different
number of outputs, depending on the location of the fault
and on the paths from the failure point to the output ports.

1. Stuck-at fault on the ADD2 output or in one ADD1
output: The error produced by the fault is limited
only to the bits of the binary representation of zi.

2. Stuck-at in the LSB of an input digit: The fault is
limited to only one ADD1 block and leads to the
modification of the parity of both wi and ci with
respect to the correct ones.

3. Stuck-at in the MSB of an input digit: A fault on an
input of ADD1 can modify the value of four output
digits. A stuck-at on a line of ai can change the value
of both wi, ci, and wiþ1 ciþ1.

Regarding the bits of weight iþ 1, it can be seen that the
only changes that can be introduced from an error on bits of

the lower level are the modification of the outputs
(wiþ1; ciþ1) from (-1, 0) to (1, -1) and vice versa or from
(1, 0) to (-1, 1) and vice versa. In all these cases, the parity
value of wiþ1 does not change as P(1) = P(-1). Therefore, the
parity of the erroneous value P ð !WWÞ depends only on the
parity P ð !wiwiÞ of the faulty digit !wiwi.

We define Z as the correct output and Z as the faulty
output (i.e., the output when an error indicator signal is
active) and define ZLS , ZRS as the correct outputs obtained
by using the Left and Right Shifted Inputs (LSI and RSI),
respectively. Finally, ZLS , ZRS are the outputs obtained
with the shifted operands when an error indicator signal is
active. It must be noticed that the shifted inputs can activate
the error detection again or not depending on the occurred
fault. The digits composing the operands are referred to
with the corresponding lowercase letter. The equality
relation zðiÞ ¼ zLSðiþ 1Þ is valid for 0 % i % 6, while a
similar relation zðiÞ ¼ zRSði" 1Þ is valid for 3 % i % 8. For
the left shifted output, the equality is not valid for zð7Þ and
zð8Þ because the most significant digits (að7Þ and bð7Þ) are
lost with the shift operation. For the right shifted output, the
equality is not valid for zð0Þ and zð1Þ and zð2Þ because the
less significant digits (að0Þ and bð0Þ) are lost and their
carries can also be lost. As stated before, the reported
procedures are possible because of the carry-free features of
the SD adders. Once a parity error is detected, the operation
is performed again with the LSI and two different cases can
be considered:

1. The parity is correct, i.e., the output is ZLS (CASE A).
2. The parity is wrong, i.e., the output is ZLS (CASE B).

CASE A: If the error indicator does not indicate the
occurrence of the fault, the new computed value ZLS and
the old wrong value Z satisfy the following relation: For
0 % j % 6, zLSðjþ 1Þ ¼ zðjÞ ¼ zðjÞ for any digit that is not
affected by the fault. Instead, for all the faulty digits i, we
have zLSðiþ 1Þ ¼ zðiÞ 6¼ zðiÞ. This relation allows both
locating the faulty digits and correcting the output values.
The number of inequalities depends on the location of the
fault which caused the error. In particular, a type 1 fault
corresponds to one inequality, a type 2 corresponds to two
inequalities, and a type 3 to three inequalities. If no
difference is found between the ZLS and Z for 0 % j % 6,
then the fault can be localized in the two most significant
digits (zð8Þ; zð7Þ). To localize and correct these faults, the
operation is performed again with RSI and the digits of ZRS

and the digits of Z will satisfy the following relation: For
3 % j % 8, zRSðj" 1Þ ¼ zðjÞ ¼ zðjÞ for any digit that is not
affected by the fault. Instead, for all the faulty digits i, we
have zRSði" 1Þ ¼ zðiÞ 6¼ zðiÞ. Thus, due to the procedure
followed, we can assume that an error must be detected in
the second shift operation (RSI). If, again, no difference is
detected, the checker is assumed to be faulty.

CASE B: If the error indicator indicates the occurrence of
the fault also in ZLS , then the localization procedure is as
follows: For 0 % j % 6, zLSðjþ 1Þ ¼ zðjÞ ¼ zðjÞ ¼ zLSðjþ 1Þ
holds for any digit that is not affected by the fault. Instead,
the digits affected by the fault produce some inequalities
between z and zLS . These inequalities can be generated by
both an error in the computation of the original result and
an error in the recomputed result. Therefore, a minimum of
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two and a maximum of four inequalities show up,
depending on the considered type of fault of the above
defined set. In particular, a type 1 fault corresponds to two
inequalities, a type 2 corresponds to three inequalities, and
a type 3 to four inequalities. The fault can be localized as the
first different digit found by performing the comparison
between Z and ZLS and the type of fault can be detected by
counting the number of inequalities. As in case A, if the
faulty digit is the seventh or eighth or the fault is localized
in the checker, no difference between Z and ZLS is detected.
Recomputing with RSI allows us to detect if the fault affects
the remaining digits or the checker. The procedure which
has been developed can also detect the faults occurring on
the error indicator blocks. In fact, if an error is detected by
the parity checkers, but no inequality has been observed
between the original computed value and the values
obtained with both RSI and LSI, then the fault affects the
checker itself. Thus, the outputs are correct, but the self-
checking capability has been lost. The algorithm of fault
detection, localization, and correction is summarized in the
graph reported in Fig. 2.

For clarity of exposition, the algorithm does not report
the border cases in which the inequality of the results affects
the digit in position 6. In this case, the wrong digit could be
only 6 (type 1 fault) or 6, 7 (type 2), or 6, 7, 8 (type 3). This
case requires the further diagnosis step which uses the RSIs.
The graceful degradation capabilities of the adder are
related to two main aspects of this algorithm: First of all, the
algorithm always allows us to detect and localize the fault;
in many cases, the correct output can be obtained by
accepting a performance degradation due to the time
needed to the repetition of the operation with LSI and (if
needed) RSI, as shown in Fig. 2. Moreover, even in those
cases when it is not possible to obtain the correct output

from ZRS and ZLS , the fault localization allows us to use the
adder with a reduced dynamic range. In fact, assuming that
nfd 2 f1; 2; 3g faulty digits are detected in an eight digits
adder, it can still be used as an ð8" nfdÞ digits adder
applying suitable modifications to the input vectors A and
B. For instance, if the digits f3; 4; 5g of the adder are faulty,
the five digit input vectors starting from the eight digit
inputs should be set up as

A ¼ fað4Þ; að3Þ; að2Þ; 0; 0; að2Þ; að1Þ; að0Þg

and

B ¼ fbð4Þ; bð3Þ; bð2Þ; 0; 0; bð2Þ; bð1Þ; bð0Þg;

while the output with reduced dynamic is: Z ¼
fzð5Þ; zð4Þ; zð3Þ;";";"; zð2Þ; zð1Þ; zð0Þg The reported exam-
ple is related to a type 3 fault in the i ¼ 3 digit. The digits
f0; 2g and f6; 8g are not affected by the fault, while, in order
to correctly compute the zð3Þ output, the digits að2Þ and bð2Þ
are repeated in position 5 to provide the correct carry to the
ADD1 block in position 6.

6 CONCLUSIONS

This paper proposes a methodology for developing fault-
tolerant adders by using the SD number representation. A
self-checking implementation of the SD adder is illustrated
and the algorithms to achieve error correction, fault
localization, and graceful degradation are proposed. The
main idea is to take advantage of the confined carry
propagation in SD adders. This characteristic has been used
to perform an error propagation analysis and to set up
localization and correction procedures. The area overhead
introduced for the detection of faults in the SD adder
(checker) is about 60 percent. Regarding the error correction
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Fig. 2. Algorithm for fault detection, localization, and correction.
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and graceful degradation capabilities, the proposed algo-
rithm localizes the faulty digit(s) by means of a recomputa-
tion with the shifted operands method. After fault
localization, two procedures have been proposed to provide
graceful degradation of the system. The first one performs
two different shift operations and uses the intersection of
the obtained results to recover the correct output, while the
second one is based on a reduced dynamic approach, which
basically allows us to obtain the result in only one step, but
with fewer output digits.
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