@ JOURNAL OF ELECTRONIC TESTING: Theory and Applications 21, 429-444, 2005
— (© 2005 Springer Science + Business Media, Inc. Manufactured in The United States.

A Comparative Evaluation of Designs for Reliable Memory Systems

G.C. CARDARILLI
Department of Electronic Engineering University of Rome “Tor Vergata”, Rome, Italy

g.cardarilli@ieee.org

F. LOMBARDI AND M. OTTAVI
Department of Electrical and Computer Engineering Northeastern University, Boston, USA
lombardi@ece.neu.edu

mottavi@ece.neu.edu

S. PONTARELLI, M. RE AND A. SALSANO
Department of Electronic Engineering University of Rome “Tor Vergata”, Rome, Italy
pontarelli@ing.uniroma?2.it
marco.re@ieee.org

salsano@ing.uniroma?2.it

Received October 5, 2004, Revised March 8, 2005

Editors: C. Metra and R. Leveugle

Abstract. This paper addresses the design of storage systems for operation under critical environmental conditions.
For these applications, these systems should have low latency time in access, high performance in throughput and high
storage capabilities; therefore, they must be assembled using highly reliable components, while allowing flexibility
in design. Commercial Off The Shelf (COTS) components have often been used. A COTS-based architecture is
analyzed in this paper; the proposed architecture uses design-level techniques (such as error detection/correction
codes and scrubbing) to make commercially available Dynamic Random Access Memory (DRAM) chips tolerant
to faults. This paper provides a complete and novel analysis of engineering alternatives which arise in the design of
a highly reliable memory system based on Reed Solomon coding. A comparative analysis of methods for permanent
fault detection is provided; moreover using a Markovian characterization, different functional arrangements (based
on code and scrubbing frequency) are investigated and evaluated.

Keywords: Markov model, reed solomon codes, fault tolerance, mass memories

1. Introduction in critical environmental conditions require an accu-

rate evaluation of these requirements at design level. A

Some applications require memory systems capable of
storing large amounts of data with tight requirements
on high reliability and data integrity. In general reliabil-
ity and data integrity are dependent on operational fea-
tures; therefore, mass storage systems which operate

particularly harsh environment is space; in space, high
energy particles together with thermal and mechanical
stress cause an increase in the failure rate of electronic
devices. Moreover, effects which in the past were only
observed in space applications, are also occurring in

430 Cardarilli et al.

very deep submicron VLSI chips. Due to the reduced
critical charge the occurrence of single event upsets by
high energy particles [28] is possible.

The requirements in performance of a mass storage
system are low latency in access time, high throughput
and storage; however, design specifications are usually
complex that an optimal balance among these require-
ments is very difficult to achieve. To meet high perfor-
mance, the use of Commercial Off The Shelf (COTS)
components is usually preferred over radiation hard-
ened components (which unfortunately have lower per-
formance features and higher costs). However if COTS
are used, then the memory system must be made tol-
erant to faults and errors which are caused by the se-
vere environmental conditions for applications such as
avionics. In this case, system-level design methodolo-
gies are usually employed.

The proposed architecture [4] improves commer-
cially available Random Access Memory (RAM) chips
by applying design-level techniques which permit per-
manent error detection and correction through appro-
priate codes [3] and scrubbing [19,27].

Error Detection And Correction (EDAC) codes im-
prove both the reliability (i.e. the probability that the
system will perform its required function over a speci-
fied period of time) of the storage system and the data
integrity (i.e. the probability that the data in the system
is correctly stored for a specified period of time); in this
paper, a class of maximum distance separable EDAC
codes known as Reed-Solomon (RS) codes, is consid-
ered. RS codes guarantee a high level of data integrity;
they are widely used both for transmission media and
storage system by providing a high level of flexibility
in the choice of appropriate datawords and codeword
lengths.

The use of additional elements (spares) improves
the reliability of the memory by allowing it to tolerate
the occurrence of permanent faults; in this approach,
spares are inserted. A delay (ideally very small) is
also accounted in the normal operation of the system,
while purging faulty/defective/erroneous components.
Finally, the scrubbing technique of [19] (which consists
of periodically reading the content of the memory and
correcting possible errors) can be used for improving
data integrity by reducing the accumulation of tran-
sient faults (such as SEUs) in the memory. Therefore,
the reliability of a storage system using these tech-
niques is closely related to the occurrence of perma-
nent faults (e.g. stuck-at [12]), while data integrity is
mainly related to the occurrence of transient faults (e.g.

SEU [2, 8]). These faults can modify the value of the
data stored in the memory elements, (even if partially
due to the occurrence of permanent faults). The occur-
rence of a permanent fault has a twofold impact on data
integrity:

o The fault can cause loss of data stored in the affected
memory element.

e The correction capabilities of the EDAC code which
is employed at system level, can be degraded, be-
cause the code must correct errors due to both types
of fault (i.e. permanent and transient).

The objective of this paper is to provide a compar-
ative evaluation of the different parameters involved
in the design of fault-tolerant memory systems. This
evaluation is focused on both hardware design issues
(as related to permanent fault detection) and opera-
tional design choices (for detecting and correcting the
occurrence of transient faults).

The paper is organized as follows: Section 2 gives a
brief review of RS codes, while Section 3 describes the
general architecture of the proposed RS coded mem-
ory. In Section 4, two different erasure detection tech-
niques are presented; in Section 5, a comparison of the
different erasure detection methods is provided. Sec-
tion 6 illustrates the method which is used to model
data integrity in the memory system; an analysis which
provides an accurate estimate of the different figures
of merit, is also introduced. Section 7 describes the re-
sults as applicable to satellite-based systems. Finally,
in Section 8 the conclusion of this paper is provided.

2. Background

Reed Solomon (RS) codes are a subset of the BCH
codes; moreover RS codes are linear block codes [3].
A Reed-Solomon code is specified as RS(n, k), where
n represents the number of symbols of m bits (with
n < 2™ — 1) of a codeword and k represents the num-
ber of symbols of the related dataword. The encod-
ing process starts from the k£ data symbols (of m bits
each) and adds the parity symbols to construct an n
symbol codeword. Therefore, n — k parity symbols are
present. A RS(n, k) code is capable to correct up to
2-er +re < n — k, where er is the number of era-
sures and re is the number of random errors. For data
transmission, a random error occurs when a symbol
of the received codeword differs from the transmitted

k 2t

DATA PARITY

Fig. 1. Reed Solomon Codeword.

codeword at an unknown location. An erasure is said to
occur when the channel side information available from
the receiver allows to localize the erroneous symbol in
the codeword. A Reed-Solomon codeword is shown in
Fig. 1: data is left unchanged and parity symbols are
appended, hence the Reed Solomon code is also known
as a Systematic code.

A widely used Reed-Solomon code is RS(255,223)
with 8-bit symbols. Each codeword contains 255 code-
word bytes, of which 223 bytes are data and 32 bytes
are parity. For this code, n = 255,k = 223,m =
8, 2t = 32 and therefore t = 16. This code allows to
correct any 16 symbol errors in the codeword: i.e. er-
rors (of up to 16 bytes anywhere in the codeword) can
be corrected. The ability to encode and decode Reed-
Solomon codes is related to the number of parity sym-
bols per codeword. A large value of r means that a large
number of errors can be corrected (also requiring more
time for the encoding/decoding process). A symbol er-
ror occurs when either one bit in a symbol is erroneous,
or when all bits in a symbol are erroneous. For example
RS(255,223) can correct 16 symbol errors. In the worst
case, 16 bit errors may occur, each in a different symbol
(byte). Therefore, the decoder will correct 16 bit errors.
In the best case, 16 complete byte errors occur, so that
the decoder corrects 16 x 8 bit errors. Therefore Reed-
Solomon codes are particularly well suited for correct-
ing burst errors (i.e. a series of bits in the codeword are
received in error). Reed-Solomon algebraic decoding
procedures can correct errors and erasures. An erasure
occurs when the position of an erroneous symbol is
known. A decoder can correct up to either ¢ errors, or
2t erasures. Erasure information can often be supplied
by the demodulator in a digital communication system,
i.e. the demodulator “flags” the received symbols that
are likely to contain errors. For a memory module, an
erasure can be effectively considered as a memory chip
failure. When a codeword is decoded, there are three
possible outcomes:

1. 2re + er < 2t (re errors, er erasures), then
the original transmitted code word will always be
recovered,

A Comparative Evaluation of Designs 431

2. The decoder will detect that it cannot recover the
original code word and it will flag it out.

3. The decoder will misdecode and recover an incor-
rect code word with no indication; this event is gen-
erally referred to as miscorrection.

The probability of each of the three above events de-
pends on a particular Reed-Solomon code and the num-
ber and distribution of errors. Reed-Solomon encoding
and decoding can be performed in software or using
a special purpose hardware. Reed-Solomon codes are
based on Galois or finite fields and a Reed-Solomon
codeword is generated using a special polynomial. All
valid codewords are exactly divisible by the generator
polynomial. The general form of the generator polyno-
mial is given by:

gr) =@ —aHx—a™) . x—a™) (D)
and the codeword is constructed as follows:

c(x) = g(x) - i(x) @

where g(x) is the generator polynomial, i(x) is the in-
formation block, c(x) is a valid codeword (referred to
as a primitive element of the field). The received code-
word r(x) consists of the original (transmitted) code-
word c(x) with possible errors, i.e.

r(x) = c(x) 4 e(x) 3

A Reed-Solomon decoder will try to identify the po-
sition and magnitude of up to ¢ errors (or 2¢ erasures)
and correct them. For a memory system, the following
assumptions are applicable:

e Transient faults (e.g. SEU) can occur in an unknown
location of a codeword, therefore they can be con-
sidered as random errors.

e Permanent faults (e.g. stuck-at 0/1) can be located in
the memory system by utilizing either self-checking
circuits, or on-line testing (refer to Section 4 for more
detail); therefore, they can be effectively considered
as erasures.

The location of each permanent fault represents a
tight requirement for the error correction capabilities
of RS codes. While every permanent fault is not local-
ized, the error correction algorithm assumes this error
to be random, thus degrading the correction capabilities

432 Cardarilli et al.

of the code. When the permanent faultis located, the ca-
pabilities of the RS code to correct an error (which has
occurred in a location) can be fully exploited. Perma-
nent fault detection methods are presented in Section
4 together with designs and a comparative evaluation
of the different parameters involved in this process.
RS codes are suitable for highly reliable memory sys-
tems due to their reconfiguration capabilities, as de-
scribed in Section 3. Finally for random errors, scrub-
bing can be utilized to take into account accumulation
in a codeword [19]. Memory scrubbing consists of pe-
riodically reading a codeword, correcting the possible
erroneous symbols and rewriting the corrected code-
word in the same memory location, thus improving the
data integrity of the memory. This technique has three
drawbacks:

1. Hardware overhead due to the logic circuitry as re-
quired to perform the operation.

2. Increase in the average memory access time with
scrubbing frequency.

3. Increase in power consumption with scrubbing fre-
quency.

To avoid the second and third drawbacks requires
scrubbing to be accurately evaluated with respect to
memory performance. A correct balance in scrubbing
frequency with application specifications allows to re-
duce its negative impact.

The parameters for evaluating data integrity of a
memory system based on RS codes can be extracted
starting from the architectural issues described previ-
ously. Such an evaluation can be performed using a
Markovian analysis and related model, as described in
Section 7.

3. Architectural Considerations

The design of a storage system made of RAM chips re-
quires an accurate characterization of the COTS com-
ponents in the environment in which they are expected
to operate. The effects of ionizing radiation on memory
chips have been extensively analyzed in the literature
[6,29]. Several EDAC-based architectures have been
proposed for hardening commercial DRAM memo-
ries [7,9, 10, 16, 18]. Initially introduced in [4], the
proposed approach relies on a memory architecture in
which EDAC codes are utilized to address issues re-
lated to both permanent and transient faults. As shown
in [4], error correcting codes increase fault tolerance

of a storage system with respect to both reliability and
data integrity. The storage system is usually made of
the following components:

e a Random Access Memory (RAM) array (made of
several COTS chips);

e Control circuitry to interface the memory bank to
other components;

e A Reed-Solomon [11,23] coder-decoder which adds
redundancy to the data stored in the RAM;

e A Scrubbing Block to perform this operation in the
memory system;

e An Erasure Detection Block to detect permanent
faults in the RAM chips.

The main hardware overhead introduced by the pro-
posed architecture is related to the Reed Solomon
codec. Both FPGA [1, 26] and ASIC [5, 13, 17] im-
plementations of an RS codec can be found in the tech-
nical literature. For evaluating and comparing the hard-
ware overhead the ASIC implementation of [5] can be
considered; this implementation has a feature size of
0.18 xum with an an area of 1.5 mm?. A single 144
Mbit DRAM [17] chip (with feature size of 0.13 pm)
has an area of 121 mm?, therefore for a single chip with
a small feature size, the overhead is approximately 1%.
The overhead due to the codec is even less for a4.5 GB
memory (i.e. 256 chips).

As for the performance degradation introduced by
the coding/decoding process , the largest delay is ac-
counted in the decoding operation. This requires fill-
ing a pipeline at the first access; therefore, a number of
clock cycles (proportional to the number of symbols of
acodeword) are required as initial latency. However for
burst accesses, the decoding can produce a decoded bit
per cycle. FPGA-based implementations require lower
clock frequencies (for [26] 110 MHz and for [1] 120
MHz on a single channel). An ASIC implementation
can run at 770 MHz [13], achieving a throughput of 6
GBits/s for burst accesses.

The degradation in power consumption due to the
proposed architecture is closely related to specific de-
sign implementations. At high level, few general con-
siderations are applicable: the power increase is mostly
related to the RS decoder; fine tuning of the scrubbing
frequency can be implemented for saving power. More-
over, a power reduction in the internal refresh circuitry
could be achieved as reported in [10].

From an architectural standpoint, the arrangements
of the RAMs permit to implement the Reed Solomon
(RS) code with different dataword and codeword

lengths. The selected length depends on the reliabil-
ity and data integrity requirements (as discussed in
more detail next). For a specific RAM scheme, dif-
ferent RS codes can be implemented [4]; for example
the RS codes with n, k = (18, 16) (36, 32) (72, 64)
(144, 128) have the same k/n ration, i.e. 0.89. The
overhead is constant with respect to the selected code
and a RAM array consisting of 144 rows can be used
to implement all of them. k/n accurately accounts for
hardware overhead of the proposed approach because
for example, a 4.5 GB memory would have a storage
capacity of 4 GB. These characteristics (constant ra-
tio and the use of the same RAM scheme) allow to
on-line reconfigure the Reed-Solomon codecs. The RS
code reconfiguration [16] can be then used when a per-
manent failure occurs in a memory. For example, if
the memory is initially configured with an RS(18,16)
code and a permanent failure occurs, then the code can-
not correct any random error. Therefore, the memory
should be reconfigured for a new RS code; in this case,
a RS(144,128) code can be used to correct 8 erased
symbols and up to 4 random symbol errors. If a non re-
configurable RS code is used, then the memory would
be permanently faulty; a possible strategy is to sub-
stitute the faulty module or chip with a spare. With a
dynamically reconfigurable RS codec, if a permanent
fault is detected in a codeword, then the content of a
faulty memory location (together with the contents of
other codewords) can be coded again using a RS code
of higher correction capability.

This process requires a buffer to temporarily store
the initial codewords for generating a longer codeword
after reconfiguration. The use of a higher RS code in-
volves also a higher number of symbols. However, the
fixed ratio % allows the use of a higher RS code with
no symbol overhead.

As an example consider the reconfiguration from
RS(36,32) to RS(144,128); assume that starting with
a RS(36,32) coding scheme, after some time, three
permanent failures (three erasures) are detected. All
data stored in the memory module is converted from
RS(36,32) to RS(144,128): o or example, four 36-byte
codewords are read and decoded and the 128 data bytes
are coded into a codeword of 144 bytes.

This procedure allows to preserve the data stored
in the memory. However, if the number of erasures is
greater than the error correction capability of the code,
(for example, 5 erasures for the RS(36,32) code), then
the data stored in the codeword is unrecoverable. The
functionality of the memory element can be restored us-

A Comparative Evaluation of Designs 433

ing a code with better error correction capabilities. The
use of longer codewords improves the integrity of the
stored data, but t may possibly degrade performances
in terms of latency (as the decoder latency depends on
the codeword length).

A scrubbing block (and its relation to the RS codec)
is shown in Fig. 2. When a scrubbing operation is per-
formed, the ready signal provided by the scrubbing
block is low. Therefore, the external interface is made
aware that the memory is ready to meet no user request.
Atthe same time, the enable signal is raised high; so, the
RS codec internally switches the address bus. During
scrubbing, the address and the control signal are pro-
vided to the memory modules (such as the signal from
the scrubbing block that during normal operation, the
codec receives from the external interface). After gen-
erating the read command from the scrubbing block,
decoding of the codeword is performed by the codec.
After this operation, the scrubbing block generates the
write command and the recoded word is rewritten in
the memory.

4. Erasure Detection Methods

The last block of the storage system is referred to as the
Erasure Detection Block. The design of this block de-
pends on the selection of the permanent fault detection
method. In the following subsections, two methods are
presented:

1. IDDg-Based Erasure Detection
2. Functional-Based Erasure Detection

4.1. IDDgq-Based Erasure Detection

Locating permanent faults can be achieved using differ-
ent methods. A permanent fault in a memory chip can
be detected by monitoring the quiescent supply current
(1444) [21]. To fully utilize the current sensors for locat-
ing faults, the behavior of the memory in the presence
of permanent faults and their impact on the quiescent
supply current, must be analyzed. Therefore, different
types of permanent fault and corresponding parameters
must be considered when designing a storage system.
For selecting a desirable detection method, it is impor-
tant to define a fault set and its occurrence probability.
The considered fault set is defined as follows:

1. Faults affecting a single memory cell usually cause
an anomalous increase of the quiescent supply

434

Cardarilli et al.

MEMORY MODULES

~ =

o

?

ADDRESS
Code word
RD_WR v
AN
RO_WR_MEM Code_word ADDR_MEMN
ENABLE Shpiue ENABLE
RO_WR RO WR + RO_WR
ADDRESS
ADDRESS ADDRESS
doge done +{ doae
Data ADD_EXT RO_WR_EXT]
ready | ready = e ady ” o W
RS_CODEC
/
. t I
Scrubbing_Block
Data_word
ADDRESS

readydj

é RD_WR

| S

EXTERNAL INTERFACE

Fig. 2.

current, therefore an error location signal can be
directly sent to the Reed-Solomon codec for locat-
ing erasures. This error location signal is high only
when the memory cell affected by the fault is ac-
tivated, i.e. the faulty cell is located. So, if a fault
free memory cell is addressed, then the output of
the IDDq tester is low, i.e. the memory location in
question is not affected by a permanent fault. When
a cell which is affected by a fault is addressed, the
quiescent supply current increases, signaling the oc-
currence of a permanent fault.

. A subset of single memory cell faults, such as
stuck-open faults, (see [14]) can not be detected
by IDDq. In this case, the Reed-Solomon codec
is still able to correct the error in the codeword,

Scrubbing block.

because it is considered like a temporary fault.
This type of fault (even if permanent) is corrected;
moreover, the rate of occurrence of these faults
Ay (undetected permanent faults) is smaller than A
and in practice, they can be neglected. Otherwise,
the Markov chain described in Section 6 must be
modified.

. Faults affecting the address decoding logic (such
as row or column decoders) or other types of fault
in the control circuitry of the memory chip, can
be detected by IDDq testing even if they may af-
fect different memory locations. The computation
of A, (as used in Section 6) for modeling permanent
faults must take into account the occurrence of this
type of fault; this is accomplished as follows: as the

evaluation is performed on single codewords, 1, (as
related to faults of type 1) must be added to kA,
where A, is the occurrence rate of faults on the de-
coding logic, and k is the ratio between the number
of rows (or columns) affected by the fault and the
total number of the rows (columns) of the memory
chip.

4.2. Functional-Based Erasure Detection

The second method for detecting a permanent fault is
based on a functionality test of the memory chip. The
fault location procedure starts upon the RS decoder
detecting an erroneous codeword. The location pro-
cedure consists in correcting the codeword, writing it
back to the same location and reading it again; if at
completion of this process an error is still present, then
the considered location is assumed to be affected by
a permanent fault (i.e. erasure). Moreover it is addi-

MEMORY MODULES

~—
R

A Comparative Evaluation of Designs 435

tionally assumed that the probability that during the
execution of the described procedure a SEU affects
the considered memory location, is negligible. Once a
memory address is diagnosed as affected by a perma-
nent fault, the location of the faulty symbol(s) inside
of the codeword is found by comparing the corrected
codeword with the codeword stored in the memory.
The address of the codeword affected by the perma-
nent fault is stored, together with the error location
word (which identifies the erased symbols inside the
codeword). The block (Fig. 3) reads the address of
the requested codeword and the address provides the
decoder with the location of the erasures inside the
codeword.

This block (Fig. 3) has a Content Addressable Mem-
ory (CAM), i.e. the memory provides the data contain-
ing the erasure location when the requested address is
present in the address match record. The table in Fig. 4
shows the content of the CAM.

ADDRESS

Code word
RD_WR

' n

reread

RO_WR_MEM Code_word ADDR_MEN
reread p» reread ADDRESS
ENABLE |+ sriable ENABLE erasures
RO_WR |+ RD'WR RD_WR e@LIRs +| e@sIns
ADDRESS detected errors
detected_taus|» | detected_erors
ADDRESS ADDRESS
done
doie + doae
ready CAM BLO{:K
e ady f-p | ready =
ready Data ADD_EXT RO_WR_EXT
rs_codec
L | /
Scrubbing_Block k4]
l | D ata_word
I ADDRESS

-
ey

EXTERNAL INTERFACE

5 RD_WR

Fig. 3. Functional test block.

436 Cardarilli et al.

ADDRESS MATCH DATA
LENGTH LENGTH
ADDRESS MATCH DATA
(ERASURES LOCATIONS)
MEMORY Ox00ffo0ff 00100000
DEPTH

Fig. 4. Table stored in the CAM.

The column on the left hand side of the table rep-
resents the addresses in which at least an erasure is
detected, while the second record contains the era-
sure locations. As an example, in the Table of Fig. 4
the address of a codeword (affected by a permanent
fault at hexadecimal address 0xOOFFOOFF) and the cor-
responding erasure location word are presented. The
codeword is composed of eight symbols, the third sym-
bol is affected by an erasure. This method is suitable
for the detection of a permanent fault of type (1) and (2)
as described in the previous section; however, it is not
appropriate for a fault of type (3). While for a fault of
type (1) or (2) only a location of the CAM is occupied,
the number of entries of the CAM for a fault of type
(3) is dependent on the number of memory cells which
are affected by this fault.

5. Comparison of Erasure Detection Methods

Performance of the proposed detection methods (with
respect to detection capabilities and impact on the over-
all system) is dependent on the type of permanent fault,
and its probability of occurrence. The detection method
presented in subsection 4.1 is not useful for a perma-
nent fault of type 2). The probability of occurrence
of this type of fault depends on the manufacturing pro-
cess of the memory chip. An ad-hoc qualification phase
(such as proposed in [2,22]) could be required for the
IDDg-based method. These techniques unfortunately
require the use of ad-hoc current sensors, which must
be correctly tuned to increase their detection capability
(for example the threshold at which the sensor must
signal the presence of a fault, is different among mem-
ory chips). Finally, the current sensors can degrade
the performance of a memory, due to their presence
in the path between the board power supply and the
effective voltage Vpp at which the memory chips are
driven.

Differently from IDDq-based erasure detection, the
method described in Section 4.2 can be applied to dif-
ferent memory chips with no modification to the de-
tection block. This method is less dependent on the
electrical characteristics of the memory chip. However,
some limitations are encountered when this method is
applied. The erasure detection method based on a func-
tional test may result into a large number of possible
erasure locations which are dependent on the depth of
the Content Addressable Memory used to implement
this block. The depth of this memory must be determi-
nated based on the permanent fault occurrence prob-
ability. As an example in a storage system of 4 GB
protected by a RS(36,32) code (for a 4.5 GB of total
memory), there are 232 addressable bytes which cor-
respond to 227 codewords. Therefore, the CAM must
have an “address match” field size of 27 bits and a
“data” field size of 32 bits. The depth of the CAM
corresponds to the maximum allowed number of de-
tectable erasures. Permanent faults of type 3) are very
critical, because they require a number of entries in the
table stored in the CAM (as related to the number of lo-
cations affected by each fault). If the fault occurs in the
decoding elements of a memory chip, then this number
can be rather large and in the worst case, it can be as
large as the entire addressable space of the memory. An
approximation to the hardware complexity of the CAM
module can be established. The CAM module can be
realized using Look-Up Tables (LUTs) FPGAs (such
as the Xilinx Virtex Il FPGA) configured as SRL16
blocks (for a more detailed discussion of this feature
please refer to [25] and [24]). The hardware complex-
ity of this module can be evaluated as number of re-
quired LUTs. The number of required LUTs is given

#LUT =D - ((%W + {%D “

If a probability less than Py = 1079 is required
for the CAM, then at the end of the mission, the
following inequality can be used to establish its
depth:

P(depth, Teom) = (1 — eCrTeomyderth . pe - (5)

where M is the address match size, i.e., log,(C/k),
C is the storage capacity of the system (in bytes), D
is the depth of the CAM corresponding to the maxi-
mum number of detectable erasures, k is the number

of symbols in a dataword, n is the number of sym-
bols in a codeword, Tk o is the End Of Mission time,
P(depth, Tgon) is the probability to have a number
of depth erasures, in a memory of C bytes, at the End
Of Mission. However, even if the CAM is full, the RS
codec can still correct permanent faults, because they
are considered like transient faults. Another drawback
of the functional test based method is related to the
off-line time of the memory due to scrubbing and test
operations. During these operations, the RS codec cor-
rects transient faults and/or detects the permanent faults
in the addressed memory location; hence, the user op-
erations of memory Read and Write are blocked. If
scrubbing is performed together with functional based
erasure detection, the off-line time increases; if either
a transient or a permanent fault has occurred in the
addressed memory location, the procedure requires a
new reading operation. The detection of this type of
fault (permanent or transient) is provided only by the
second read operation. The off-line time is the sum of
the times for the decoding and coding operations (in
case of IDDg-based testing), i.e. the time implied for
the first decoding, the time for coding, and if an error is
detected, the time for the second decoding operation.
The probability of performing the write and the second
read (recoding and decoding) operations is dependent
on the frequency A + A.. The algorithm for functional
erasure detection assumes that the pipeline in the oper-
ation of the coding and decoding processes can not be
easily implemented. Only at the and of the first de-
coding operation, the algorithm can decide whether
another address can be processed, or the write and a
second read operations must be performed to detect
and locate permanent faults. An architectural solution
based on pipelining the operation (together with a flush-
ing procedure) can reduce the possible drawbacks. The
RS codec can be implemented by a pipeline architec-
ture, and an additional flushing signal can be used to
reset the register in the pipeline (if an erroneous word is

Table 1. Characteristics of the proposed methods.

A Comparative Evaluation of Designs 437

detected), i.e. there is a need for performing a write and
a second read operations on the same address. This ar-
chitectural solution can reduce the impact of functional
test on the off-line time, but it requires the design of a
rather complex erasure detection block as well as the
RS codec. In conclusion, the choice of one of the two
proposed methods is closely related to the following
features:

e The availability of proper electrical characteristics
for the memory chip in the presence of faults to tune
the IDDq tester. If these parameters are not available,
then the use of the functional test approach is much
likely imperative.

e Ahigh probability of occurrence of a permanent fault
of type 2) discourages the use of an IDDg-based
test, while an high occurrence of faults of type 3) in-
creases the depth of the CAM used for the functional
approach (therefore affecting the hardware complex-
ity of this block).

e The IDDqg-based solution is preferable if the system
must have a low off-line time.

A detailed Table 1 summarizing the results of this
section is reported: “+” (“—"") sign identifies the posi-
tive characteristic (negative) of a method.

6. Markov Modeling

A RS coded memory system implementing a scrub-
bing technique can be described using a Markov model
[20]. A Markov model is particularly suitable for
establishing and evaluating data integrity as BER at
a given time T'. The states S(er, re) of the Continuous
Time Markov Chain (CTMC) which can be associated
with the system temporal evolution, can be uniquely
identified by the indices er and re, which represent the
number of random errors and erasures in the various

Availability
Kind (1) Kind (2) Kind (3) HW Off-line of electrical
fault fault fault complexity time characteristic
IDDq based + - + - - =
erasure detection
Functional based + + — - — +

erasure detection

438 Cardarilli et al.

[TYYY) \;/

T (n-he - mA(n-t)

| —

e0000 | \(ﬂ_—t)}\e / \
L N\
I

Fig. 5. Markov model of a RS code.

symbols of a codeword at time 7. The start state at
T = 0 (or Good state) is given by G = S(0,0) in
which er = re = 0, while the unrecoverable error
state (or Fail state) is given by F = S(er, re) (in this
state, 2 - er + re > n — k). A transition between states
represents the rate of occurrence of either transient,
and/or permanent faults, or a scrubbing operation. If A
denotes the SEU rate affecting a single bit of a sym-
bol, X, as the permanent fault rate per symbol and T,
as the scrubbing operation period, then the following
transition rates can be defined:

o r(er,re) = m -\ -(n — er — re) is the transition
rate from state S(er, re) with er erasures and re ran-
dom errors to state S(er, re + 1) with er erasures and
re + 1 random errors.

o r..(er,re) = A, - (n — er — re) is the transition rate
from state S(er, re) with er erasures and re random
errors to state S(er + 1, re) with er 4 1 erasures and
re random errors.

o r.(re) = A, - (re) is the transition rate from state
S(er, re) with er erasures and re random errors
to state S(er + 1, re — 1) with er + 1 erasures and

® Ise =

re — 1 random errors. In this case a permanent fault
affects a symbol previously affected by a random
error.

Tiw is the transition rate from state S(er, re)
with er erasures and re random errors to state
S(er, 0) with er erasures and O random errors. In this
case, the scrubbing operation can correctly rewrite all
symbols in the codeword affected by random errors,
but it cannot rewrite the correct values of symbols af-
fected by erasures (as erasures represent permanent

faults).

In the previous definitions, it has been assumed that
the probability that a bit flip affects an already af-
fected symbol is negligible, and it can be omitted.
Starting from these assumptions and the definitions
of rates, a Markov chain as shown in Fig. 5 can be
obtained.

In Fig. 5 an RS(n,k) code is used to correct up to ¢
random errors over a fixed Tg¢ period. Due to the cor-
rection capabilities, as long as the code is correctable
the number of erroneous bits is 0. When the codeword
is not correctable, the number of erroneous bits can

be roughly assumed to be equal to the number of bits
making the n — k symbols (i.e. the Hamming distance
between the two codewords). Thus, the BER of the
memory system can be defined as the probability of
the codeword of being not correctable, i.e. the prod-
uct of the probability of being in the F state of the
Markov chain (denoted by P(F)) and the number of
bits in the Hamming distance with the closest symbol.
Therefore:

—k
BER=m. "~

- P(F) (6)

P(F) can be obtained from the solution of the
Markov model. An n-state Markov model leads to a
set of n-coupled differential equations. These equa-
tions can be represented with vector notation. If the
states S(er,re) are ordered from O (the G state)
to n (the F state), and on the assumption that the
vector P(t) = [PS(())(I), PS(])(I)» ey Ps(n)([)], where
Pg(iy(t) is the probability of being in state S(i) at
time ¢, then the set of differential equations is given
by P’(t) = AP(t). The matrix A consists of the
transition rates given above. In particular, a generic
element a; ; with i # j represents the transition

ai 0 0 0 0
nA, an 0 0 0
0 (n—Dx, a3 0 0
0 (n—2)A. as s 0
0 0 0 (n—3)A, as,s
nmi 0 0 0 0
0 (n—1mr 0 0 0
0 0 (n —2)ymx 0 0
0 0 0 0 0
0 0 0 (n—=3mxr (n—4, +md)

rate from state i to state j, while the element g; ; repre-
sents the rate related to the probability of permanence in
the i-th state,i.e.itcanbedefinedasa; ; = — Z#i a; .

7. BER Analysis and Evaluation

In this section, the evaluation of the BER of a stor-
age system with RS codes is reported. The evaluation
is performed using a numerical solution of the set of
differential equations and computing the BER as per
Eq. (6). The evaluation is pursued by considering dif-
ferent scenarios as follows:

A Comparative Evaluation of Designs 439

1. The physical environment in which the system op-
erates, i.e. the permanent and transient failure rates,

2. The choice for the RS code, i.e. the data-word and
code-word lengths,

3. The periods for the storage time, the scrubbing fre-
quency and the mission time

4. System performance (latency, storage capabilities,
mission specs)

As for the transient fault rate, a space environment
is assumed throughout as an example of an harsh
environment in which high reliable memory systems
are often required to operate. In an interplanetary
space, a background rate of 7.3 - 10~7 errors/bit/day
is usually considered; this can occasionally increase
up to 1.7 - 107 errors/bit/day during solar flares. The
rate of permanent faults depends on the reliability
of the memory chips and can be evaluated using the
models of [4, 15]. The first step in the evaluation
process is performed by computing the element a; ; of
the matrix A, starting from the transition rates r,., 7,
Ters T'sc described in the previous section. As an exam-
ple for the RS(36,32) code, the matrix A is reported
below:

= 0 0 7 0

e - 0 0 0

0 e ~ 0 0

0 0 e 0 0

0 0 0 0 0

a6 0 0 0 0

(n — D a7 0 Dhe 0

0 (n — 2, ags 0 0

(n — Dmx 0 0 as9 0

0 n—2ymr (n—3)A, +mr) (n—2)r,+mdr) 0
where a;; = — 3, a; ;.

Three cases are considered and studied in more
detail:

1. Comparison between RS(18,16) and RS(36,32)
for BER(#) with no scrubbing and variable SEU
rate,

2. Comparison between RS(18,16) and RS(36,32) for
BER(t) during solar flares under different 7. peri-
ods,

3. Analysis of RS(36,32) for BER(#) by considering
the occurrence of permanent faults.

440 Cardarilli et al.

BER
3
i—

SEU Rate
— 7.3E-7
18 —— 3.6E-6
107k 1.7E-5 |
10'2‘7 I I 1 I
0 5 10 15 20 25
(@)
107" . .
1078 _,// _______________——— =
II/-F B S
_10] / P E
10 /l
|
10"’r E
10k |
107 .
— 7.3E-7
3.6E-6
1078 — 1.7E-5 i
107 1 1 1 1
0 5 10 15 20 25

(b)

Fig. 6. BER of RS(36,32) and RS(18,16) codes.

In the evaluation of cases (1) and (2) above, data
is assumed to be stored in memory for two days
(T;, = 48h) and, therefore an estimate for the BER
during this interval is pursued. These are useful ex-
amples to show the flexibility of the proposed method
when different design parameters are considered. The
first evaluation has been performed on the RS codes
RS(18,16) and RS(36,32) with no scrubbing, no per-

manent fault and with a rate of transient faults given by
Ae[73-1077,1.7-107°]. Fig. 6 shows the BER of
these two codes.

The following considerations can be drawn using the
obtained data:

1. Atasmall SEU rate, the RS(36,32) code provides a
BER less than 102 with no scrubbing.

12

A Comparative Evaluation of Designs 441

BER of R5(36,32) code @ ditferent Tscrubbing

107 T T T T

o
w
o -
ol Scubbing Period
10"5 L 1 L I L 1 L i :
1] 5 10 15 20 25 30 35 40 45 50
hours
(@)
BER of RS(18,16) code @ different Tscrubbing
107" : : - T T T . T :
i
w -
o
I.'"I Scubbing Peried
107" H — 3600 s 7
— 1800 s
— 1200 s
900 s
1 D—'3 1 1 1 I L L L 1 L
0 5 10 15 20 25 30 35 40 45 5C
hours
(b)

Fig. 7. BER of RS(36,32) and RS(18,16) codes with different T..

2. The use of the RS(18,16) code with no scrubbing
should be avoided, because its BER is up to 10710
even with a very small SEU rate.

3. The use of the RS(36,32) code with no scrubbing
can be considered provided it is assumed that during

the mission of the satellite, the frequency of the solar
flares is negligible.

Fig. 7 focuses on the behavior of the RS(36,32) and
RS(18,16) codes during solar flares. The parameter A

442 Cardarilli et al.

BER of RS({36,32) code with different permanent faiulre rates
T

10 T

107

BER

107

18|

T T

10

Month

Fig. 8. BER of RS(36,32) code with different A,.

is fixed to 1.7 - 107>, this is a very large SEU rate. The
BER with different 7y, is evaluated to tune the scrub-
bing frequency with respect to the space environment.
The results of the BER evaluation for the two codes
are reported under different scrubbing frequencies (by
varying from once up to 4 times every hour). Also in
this case, no permanent fault is assumed to have oc-
curred in memory (i.e. A, = 0).

The results show that the RS(18,16) code can not
guarantee a low BER (less than 107'2) during solar
flares even by using scrubbing. Therefore in this case
the use of the RS(36,32) code is mandatory. Using a
RS(36,32) code, the scrubbing frequency required for
keeping the BER to a value below 1072, is less than
once per hour.

A further evaluation that has been undertaken, con-
sists of assessing the behavior of the RS code in
the presence of permanent faults. Fig. 8 shows the
results of RS(36,32) under different permanent fail-
ure rates. The scrubbing period is given by 1000
sec and the permanent failure rate is in the range of
Ae € [1-107', 1. 107%]. In this case the data is as-
sumed to be permanently stored into memory for the
whole mission lifetime. Therefore, the results are for
a storage time period of about 24 months as mission
time. An evaluation of the BER with a storage time of
T, = 48 h as in previous cases, could be performed
with suitable modification to the Markov model and

by taking into account the additional transitions for
1/Ts.

The scenarios studied in this section are just few
examples of the evaluation that can be performed by
exploiting the flexibility of the proposed method. In
particular, the dependency of BER on different param-
eters can be pursued to select the architecture for a
specific application.

8. Conclusions

This paper has addresses issues related to the efficient
design of memory systems for application in critical en-
vironments such as avionics. The use of Reed-Solomon
codes to obtain high reliability and data integrity has
been described in detail; design features and architec-
tural considerations for high performance have also
been evaluated. The use of RS codes to detect and
locate permanent faults in the memory elements has
been analyzed. Different strategies for the detection of
permanent faults have been proposed, and a discussion
of features has been extensively reported. This analysis
focuses on hardware complexity, off-line operation and
availability of information for the behavior of memory
chips under the occurrence of permanent faults.

An estimate of hardware complexity has been pro-
vided for a functional test based detection method; the
probability to correctly handle an erasure at the end of

the mission and an architectural solution to reduce the
impact of a functional test for off-line time have been
proposed.

The analysis of the erasure detection methods (which
are related to high level design) has been complemented
by an analysis of the various operational parameters and
on their impact on the BER of the system. The con-
sidered operational parameters are dependent on the
physical environment, architectural features (such as
scrubbing period or dataword and codeword lengths),
as well as high level design choices (such as BER).
A method for evaluating the BER has been proposed;
this method is based on Markov modeling and allows
the evaluation of data integrity with respect to a chosen
RS(n,k) code and both permanent and transient faults.
In particular, the proposed model takes into account the
degradation of data integrity caused by the occurrence
of permanent faults while it allows to consider BER
as a function of time. Finally, it has been shown that
the proposed method permits an extensive flexibility
for evaluating different techniques to improve the BER
(such as scrubbing and spare memory modules).

References

1. Altera Reed-Solomon compiler User Guide 3.3.3.

2. G. Berger, G. Ryckewaert, R. Harboe-Sorensen, and L. Adams,
“Cyclone—A Multipurpose Heavy Ion, Proton and Neutron SEE
Test Site,” RADECS Radiation and its effects on Components
and Systems, 1997.

3. R.EE. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley Publishing Company, 1983.

4. G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ofttavi, S.
Pontarelli, M. Re, and A. Salsano, “Design of a Fault Tolerant
Solid State Mass Memory,” IEEE Transactions on Reliability,
vol. 52, no. 4, pp. 476-491, 2003.

5. A. Dinh and D. Teng, “Design of a High-Speed [255, 239] RS
Decoder Using 0.18 m CMOS,” in Canadian Conference on
Electrical and Computer Engineering, 2004.

6. J. Fox, W.E. Abare, and A. Ross, “Suitability of COTS IBM
64 Mb DRAM in Space,” Fourth European Conference on Ra-
diation and Its Effects on Components and Systems, RADECS
97, 1997, pp. 240-244.

7. W.Gao and S. Simmons, “A Study on the VLSI Implementation
of ECC for Embedded DRAM,” IEEE Canadian Conference
on Electrical and Computer Engineering, vol. 1, pp. 203-206,
2003.

8. A.H. Johnston, “Radiation Effects in Advanced Microelectron-
ics Technologies,” IEEE Transactions on Nuclear Science, vol.
45, no. 3, 1339-1354, 1998.

9. Y. Katayama, Y. Negishi, and S. Morioka, “Efficient Error Cor-
rection Code Configurations for Quasi-Nonvolatile Data Reten-
tion by DRAMS,” IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp. 201-209, Oct. 2000.

10. Y. Katayama, E.J. Stuckey, S. Morioka, and Z. Wu, “Fault-

11.

12.

13.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

A Comparative Evaluation of Designs 443

Tolerant Refresh Power Reduction of DRAMSs for Quasi-
Nonvolatile Data Retention,” IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, DFT *99, pp. 311—
318, Nov. 1999.

S. Kwon and H. ShinDept, “An Area-Efficient VLSI Architec-
ture of a Reed-Solomon Decoder/Encoder for Digital VCRs,”
IEEE Transactions on Consumer Electronics, vol. 43, pp. 1019—
1027, 1997.

PK. Lala, Fault Tolerant and Fault Testable Hardware Design,
Prentice-Hall, 1985.

H. Lee, “High-Speed VLSI Solomon Decoder,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 11,
no. 2, 2003.

. J. Liu and R.Z. Makki, “SRAM Test Using On-Chip Dynamic

Power Supply Current Sensor, Memory Technology,” Design
and Testing Proceedings. International Workshop on, 1998,
pp. 57-63.

MIL-HDBK 217.

C. Paar and M. Rosner, “Comparison of Arithmetic Architec-
tures for Reed-Solomon Decoders in Reconfigurable Hardware,”
Symposium on Field-Programmable Custom Computing Ma-
chines, 1997, p. 219-225.

H. Pilo, D. Anand, J. Barth, S. Burns, P. Corson, J. Covino,
and S. Lamphier, “A 5.6-ns Random Cycle 144-Mb DRAM
with 1.4 Gb/s/pin and DDR3-SRAM Interface,” IEEE Journal
of Solid-State Circuits, vol. 38, no. 11, 2003.

B. Polianskikh and Z. Zilic, “Design and Implementation of
Error Detection and Correction Circuitry for Multilevel Memory
Protection,” IEEE International Symposium on Multiple-Valued
Logic, ISMVL 2002, May 2002, pp. 89-95.

A.M. Saleh, J.J. Serrano, and J.H. Patel, “Reliability of Scrub-
bing Recovery-Techniques for Memory Systems,” IEEE Trans-
actions on Reliability, vol. 39, pp. 114-122, 1990.

L. Schiano, M. Ottavi, and F. Lombardi, “Markov Models of
Fault-Tolerant Memory Systems Under SEU,” IEEE Interna-
tional Workshop on Memory Technology, Design and Testing,
2004.

. J.M. Soden, “IDDQ Testing for Submicron CMOS IC Tech-

nology Qualification, IDDQ Testing, Digest of Papers,” IEEE
International Workshop on, pp. 52-56, 1997.

R. Velazco, Ph. Cheynet, A. Bofill, and R. Ecoffet, “THESIC:
A Testbed Suitable for the Qualification of Integrated Circuits
Devoted to Operate in Harsh Environment,” IEEE European Test
Workshop (ETW.98), pp. 89-90, 1998.

W. Wilhelm, “A New Scalable VLSI Architecture for Reed-
Solomon Decoders,” IEEE Journal of Solid-State Circuits,
vol. 34, 1999, 388-396.

Xilinx Inc., Content-Addressable Memory V3.0 Data Sheet,
Product Specification.

Xilinx Inc., Virtex-1I Field-Programmable Gate Arrays Data
Sheet, Advance Product Specification.

Xilinx Logicore Reed-Solomon Decoder v5.1.

G.C. Yang, “Reliability of Semiconductor RAMs with
Soft-Error Scrubbing Techniques,” Computers and Digital
Techniques IEE Proceedings, vol. 142, no. 5, pp. 337-344, 1995.
J.E. Ziegler, “Terrestrial Cosmic Ray Intensities,” IBM J. Res.
Develop., vol. 42, no. 1, pp. 117-139, 1998.

J.F. Ziegler and M.E. Nelson et al., “Cosmic Ray Soft Error rates
of 16-Mb DRAM Memory Chips,” IEEE J. Solid-State Circuits,
vol. 33, no. 2, 1998.

444 Cardarilli et al.

Gian Carlo Cardarilli received the Laurea (summa cum laude) in
1981 from the University of Rome La Sapienza. He works for the
University of Rome Tor Vergata since 1984. At present he is full
professor of Digital Electronics and Electronics for Communication
Systems at the University of Rome Tor Vergata. During the years
1992-1994 he worked for the University of L Aquila. During the
years 1987/1988 he worked for the Circuits and Systems team at
EPFL of Lausanne (Switzerland). Professor Cardarilli interests is in
the area of VLSI architectures for Signal Processing and IC design.
In this field he published over 140 papers in international journals
and conferences. He also participated to the work group of JESSI-
SMI for the support to the medium and small industries. For this
structure he consulted different SMIs, designing a number ASICs,
in order to introduce the microelectronics technology in the indus-
try’s products. He has also regular cooperation with companies like
Alenia Aerospazio, Rome, Italy, STM, Agrate Brianza, Italy, Mi-
cron, Avezzano, Italy, Ericsson Lab, Rome, Italy and with a lot of
SMEs. Scientific interests of Professor Cardarilli concern the design
of special architectures for signal processing. In particular, he works
in the field of computer arithmetic and its application to the design
of fast signal digital processor. He also developed mixed-signal neu-
ral network architectures implementing them in silicon technology.
Recently, he also proposed different new solutions for the implemen-
tation of fault-tolerant architectures.

Fabrizio Lombardi graduated in 1977 from the University of Essex
(UK) with a B.Sc. (Hons.) in Electronic Engineering. In 1977 he
joined the Microwave Research Unit at University College London,
where he received the Master in Microwaves and Modern Optics
(1978), the Diploma in Microwave Engineering (1978) and the Ph.D.
from the University of London in 1982.

He is currently the holder of the International Test Conference
(ITC) Endowed Professorship at Northeastern University, Boston. At
the same Institution during the period 1998-2004 he served as Chair
of the Department of Electrical and Computer Engineering. Prior
to Northeastern University he was a faculty member at Texas Tech
University, the University of Colorado-Boulder and Texas A&M Uni-
versity.

Dr. Lombardi has received many professional awards: the Visit-
ing Fellowship at the British Columbia Advanced System Institute,
University of Victoria, Canada (1988), twice the Texas Experimental
Engineering Station Research Fellowship (1991-1992, 1997-1998)
the Halliburton Professorship (1995), the Outstanding Engineering
Research award at Northeastern University (2004) and an Interna-
tional Research award from the Ministry of Science and Education of
Japan (1993-1999). Dr. Lombardi was the recipient of the 1985/86
Research Initiation award from the IEEE/Engineering Foundation
and a Silver Quill award from Motorola-Austin (1996).

Dr. Lombardi was an Associate Editor (1996-2000) of IEEE
Transactions on Computers and a Distinguished Visitor of the IEEE-
CS (1990-1993 and 2001-2004). Since 2000, he has been the As-
sociate Editor-In-Chief of IEEE Transactions on Computers and an
Associate Editor of the IEEE Design and Test Magazine. Since 2004
he serves as the Chair of the Committee on “Nanotechnology De-
vices and Systems” of the Test Technology Technical Council of the
IEEE.

Dr. Lombardi has been involved in organizing many international
symposia, conferences and workshops sponsored by professional
organizations as well as guest editor of Special Issues in archival
journals and magazines such as the IEEE Transactions on Comput-

ers, IEEE Transactions on Instrumentation and Measurement, the
IEEE Micro Magazine and the IEEE Design & Test Magazine. He
is the Founding General Chair of the IEEE Symposium on Network
Computing and Applications.

His research interests are testing and design of digital systems,
quantum and nano computing, ATE systems, configurable/network
computing, defect tolerance and CAD VLSI. He has extensively pub-
lished in these areas and edited six books.

Marco Ottavi is currently postdoctoral research associate at the
ECE Department of Northeastern University in Boston. He received
the Laurea degree in Electronic Engineering from University of
Rome “La Sapienza” in 1999 and the Ph.D. in Microelectronics
and Telecommunications from University of Rome “Tor Vergata” in
2004. In 2000 he was with ULISSE Consortium, Rome as designer
of digital systems for space applications. In 2003 he was visiting
research assistant at ECE Department of Northeastern University.
His research interests include yield and reliability modeling, fault-
tolerant architectures, on-line testing and design of nano scale circuits
and systems.

Salvatore Pontarelli is currently postdoctoral research associate at
the University of Rome, Tor Vergata. He received the Laurea degree in
Electronic Engineering from the University of Bologna in 1999 and
the Ph.D. in Microelectronics and Telecommunications Engineer-
ing from the University of Rome Tor Vergata in 2003. His research
mainly focuses on fault tolerance, on-line testing and reconfigurable
digital architectures.

Adelio Salsano was born in Rome on December 26, 1941 and is cur-
rently full professor of Microelectronics at the University of Rome,
Tor Vergata where he teaches the courses of Microelectronics and
Electronic Programmable Systems. His present research work fo-
cuses on the techniques for the design of VLSI circuits, considering
both the CAD problems and the architectures for ASIC design. In
particular, of relevant interest are the research activities on fault tol-
erant/fail safe systems for critical environments as space, automo-
tive etc.; on low power systems considering the circuit and archi-
tectural points of view; and on fuzzy and neural systems for pattern
recognition. An international patent and more than 90 papers on in-
ternational journals or presented in international meetings are the
results of his research activity. At present he is the President of a
national consortium named U.L.I.S.S.E., between ten universities,
three polytechnics and several of the biggest national industries, as
STMicroelectronics, ESAOTE, FINMECCANICA. He is responsi-
ble for contracts with the ASI, Italian Space Agency, for the eval-
uation and use in space environment of COTS circuits and for
the definition of new suitable architectures for space applications.
Professor Salsano is also involved in professional activities in the
field of information technology and is also consultant of many pub-
lic authorities for specific problems. In particular, he is consultant of
the Departments of the Research and of the Industry, of IMI and of
other authorities for the evaluation of industrial public and private
research projects. Professor Salsano was a member of the consulting
Committee for Engineering Sciences of the CNR (National Research
Council) from 1981 to 1994 and participated in the design of public
research programs in the fields of Telematics, Telemedicine, Office
Automation, Telecommunication and, recently, Microelectronics and
Bioelectronics.

