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Partially reversible pipelined QCA circuits:
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Abstract— This paper introduces an architecture for quantum-
dot cellular automata (QCA) systems with the potential for
high throughput and low power dissipation. The combination
of regions with Bennett clocking and of regions used for mem-
ory storage combines the low power advantages of reversible
computing and the high throughput advantages of pipelining. A
simple case study is employed to evaluate the proposed pipelined
architecture in terms of throughput and power consumption due
to information dissipation.

I. INTRODUCTION

Among the innovative technologies that have been pro-
posed to overcome the limitations of “end of the roadmap”
CMOS, Quantum-dot Cellular Automata (QCA) shows fea-
tures that are very promising to achieve both high com-
putational throughput and low power dissipation. The QCA
computational paradigm [1] [2] [3] on one hand introduces
highly pipelined architectures with extremely high speeds (in
the order of THz) while on the other hand radically departs
from switch based CMOS, avoiding the movement of charge
from Vdd to Ground and the consequent energy dissipation. An
operating single cell [4] and a functional logic gate have been
demonstrated [5] using metal dot implementations at cryogenic
temperatures. Moreover, recent advances in fabrication of
molecular scale QCA cells suggest the realizability of QCA
cells a few nanometers on a side that would allow room
temperature operation.

In addition to having great promise for being small, high
speed devices, it has been shown that QCA has great potential
for low power operation. The reversible computation paradigm
is particularly well suited to QCA since Timler showed that
in a clocked, information preserving system, the energy dis-
sipation of the QCA circuit can be much lower than kBT ln2
[6].

Reversible computation is drawing increasing interest as
a very low power computation paradigm since it is able to
overcome the fundamental power limitation of the current
irreversible approach. In fact, it is foreseen [7] that in few
decades, the main obstacle to further integration of computing
will be thermal factor as bit energies approach the absolute
thermodynamic lower bound of kT ln2, [8], when only the
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energy associated to the physical information of a bit (phys-
ical entropy) will be used to encode each logical bit. This
assumption is based on the fact that when destroying the
information of a bit, the energy associated with it needs to
be irreversibly “thermalized”, or converted to thermal energy
Q = T∆S = TkBln2 where T is the temperature, kB is
the Boltzmann’s constant and ∆S is the increase in entropy
related to the loss of free energy of one bit.

However, information does not need to be destroyed in the
course of computation. This was shown in Bennett’s seminal
work [9]. In short, Bennett’s idea was to store intermediate
results of computation rather than destroying them. Once the
output is computed and saved, the direction of computation
can be reversed to decompute the intermediate results. In other
words, instead of destroying the intermediate results, they are
transformed back into the original input. This approach allows
the power consumption to be reduced to arbitrarily low levels
but incurs a cost in either computation time or space [10].

The Bennett approach has inspired the introduction of
the “Bennett clocking” scheme for QCA [11]. The Bennett
clocking scheme will be discussed in detail in section III-
A. In brief, the intermediate values of the computation are
saved “in place” by leaving the QCA cells that computed the
intermediate results locked. The Bennett scheme has very low
power consumption and no space redundancy as it does not
require any modification at the QCA circuit but introduces a
significant time redundancy compared to Landauer clocking,
the traditional QCA clocking scheme with inherent fine-
grained pipelining.

A QCA circuit using only the Bennett scheme could require
an unacceptably long time to produce its outputs. A hybrid
solution would be useful to reduce the power consumption
without sacrificing high throughput. Such hybrid solution
should combine the advantages of pipelining and reversibility
to achieve high throughput and low power consumption. This
paper proposes such a hybrid design approach for QCA
circuits that combines regions of Bennett clocked logic with
memory stages to facilitate pipelining. The approach is evalu-
ated in terms of throughput and power consumption due to
bit erasures for different pipeline granularities. The power
consumption due to the clocking layer is beyond the scope
of this work and will be discussed elsewhere.

This paper is structured as follows: section 1 introduces
molecular QCA, section 2 presents the proposed approach
discussing the details of Computation Stages and Memory
stages. Section 3 discusses the parameters used for the per-
formance evaluation while section 4 applies the evaluation to
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Fig. 1. QCA cell bistable feature

Fig. 2. QCA binary wire

a case studies of a binary tree composed of XOR gates (parity
checker) and provides closed form formulas used for the
performance evaluation together with some parametric plots
to compare Landauer and Bennett clocking schemes. Finally,
in section 5 the conclusions are drawn.

II. MOLECULAR QCA

Quantum dot Cellular Automata (QCA) is a computation
paradigm based on a cell composed of six quantum dots and
two extra charges that can tunnel between the dots of the cell
but cannot tunnel outside the cell. The Coulombic repulsion
between the extra charges leads to two stable states in which
the charges are in antipodal locations along one of the two
the diagonals (figure 1). A logical zero corresponds to the
configuration where a line through the extra charges has a
negative slope. A logical one corresponds to a positive slope.
The center dots are used to facilitate clocking of the QCA cell
by means of an electric field perpendicular to the plane of the
QCA cells. By means of the clocking field, the extra charges
can be drawn into the center dots rendering the cell neutral
or pushed onto the corner dots forcing the cell to assume a
particular value.

Through Coulombic interaction, the information contained
in a single cell can be propagated to other cells to form a
binary wire (figure 2). The basic logic gate, the majority voter,
works in a similar fashion where the output cell assumes the
configuration of the majority of the inputs (figure 3). Along
with the inverter, this forms a functionally complete logic set.

Figures 2 and 3 also show that the propagation of the
signal is carried out through a sequence of the four clock
states switch, hold, release, and relax. These clock phases are
generated by a traveling wave of E field perpendicular to the
QCA plane. In the switch phase, a cell is assuming a new
configuration when the charges are moving from the center
dots to the corners. In the hold phase, a cell has a definite
configuration and can drive the value of neighboring cells. In
the release phase the cell is losing its configuration as the extra
charges are drawn into the center dots. Finally, when a cell

Fig. 3. QCA Gates

is in the relax phase, it cannot influence the configuration of
neighboring cells. In the six dot cell, this corresponds to when
the extra charges are in the center dots. In figure 2, the cells
on the far left and far right of the wire segment shown are in
relax. The second cell (from the left) is releasing its value. The
third, fourth, and fifth cells have a definite value and are in
the hold phase. These cells are driving the sixth cell which is
in the switch phase, assuming a new value. Since the seventh
cell, the far right cell, is in the relax phase, it has no value
and cannot influence the new configuration being assumed by
the sixth cell.

The clocking scheme in which this pattern ripples down the
wire in one direction is the traditional QCA clocking scheme,
Landauer clocking. Its advantage is that can be pipelined at
a very fine-grained level. However, while the wire and the
inverter are logically reversible functions characterized by low
power consumption (� kBT ln2) since they do not destroy
information, the majority voter is logically irreversible since
the minority input is destroyed. The minority input’s energy
is thermalized, increasing the entropy by ∆S = kBln2 and
dissipating at least kBT ln2 (approximately the kink energy
Ek).

To take advantage of the low power computation potential of
QCA, information cannot be destroyed in this manner. Bennett
provides a solution to the problem. If the intermediate results,
in this case the inputs to the majority gate, are saved, the
majority function can be decomputed after its output has been
latched. In the context of QCA, this can be done with no space
overhead by Bennett clocking the circuit [11].

This approach will form the foundation of the hybrid
solution presented here. While Bennett clocking does not incur
space overhead, it does entail a performance hit in terms of
throughput. The hybrid approach discussed below leverages
the strengths of Bennett as well as the strengths of pipelining.

III. PROPOSED APPROACH

This section reports the proposed approach to obtain high
performance in power consumption and throughput. The de-
sign is divided into computational and memory stages, the
computational stages are clocked with the Bennett scheme and
do not dissipate power. The memory stages are used to in-
troduce multiple stages in the circuit and increase throughput.
We consider a circuit as being partitioned into M stages where
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Fig. 4. Proposed pipelined approach: Top view

Fig. 5. Proposed pipelined approach: Cross Section

each stage has ij inputs and oj outputs. Obviously ij = o(j−1)

since a stage’s input is the output from the previous stage.

A. Computation Stages

In this section we describe the clocking scheme for the com-
binational parts of the circuit. Before describing the adopted
clocking scheme we provide some background on the clock
distribution techniques and clocking schemes proposed for
QCA.

We use the distribution mechanism introduced in [12] where
an E field generated on a layer of metallic wires above (or
below) the QCA layer controls the tunneling within individ-
ual QCA cells. The cells are not directly connected to the
clocking circuitry, a substantial advantage when working at
the molecular scale. Moreover the continuous transition of the
E field on the leading edge of the wave reduces the possibility
of kink, or error on a wire.

The traveling E field is generated by providing each of the
wires with a voltage phase shifted from the neighbor by π

2 and
having a conducting ground layer on the other side of the QCA
layer. Hennessy shows that the E field generated with such a
circuit can assume a sinusoidal shape, allowing for Landauer
style clocking. The z component of the vector ~E that acts as
the clock signal can be described by the wave equation [13]:

Ez(x, t) = E0cos(κx− ωt).

Computation, the switching of cells, occurs only on the
leading edge of the wave, giving the circuit directionality
and virtually eliminating the probability of kink. This is a
space continuous implementation of the classic four phases-
four zones clocking scheme introduced in [2]. This clocking
strategy has been called a “traveling wave”, a “computational
wave”[14], and “Landauer”[6] clocking. Here, in the context of
reversibility, we choose to use “Landauer” clocking to describe
this clocking approach.

The maximum performance in terms of speed is related to
the maximum applicable clock speed and is a consequence of
the physics of the tunneling between quantum dots. In order
to maintain the adiabatic solution of the Schrödinger equation
the switch time t∗ of the E field on a cell must be greater than
the tunneling speed between quantum dots [2]. Consequently,
the fastest applicable clock period on a cell is

Tl = 2t∗

and therefore ω ≤ ω0 = 2π
2t∗ . The constraint on the maximum

applicable period will be used in a later section to measure
the throughput of Landauer clocking for the case studied,
generally for o outputs Tr = o

2t∗ .
The traveling Ez wave is also characterized by its phase

velocity

v =
ω

κ
=

λ

2t∗
.

Notice that v and λ are directly proportional. For a given
t∗, then, the throughput will be constant, but the velocity of
the wave will indirectly describe the depth of the pipeline.
The wavelength λ is the distance between neighboring regions
of active QCA cells. As the distance between active regions
grows (i.e. the pipeline depth decreases) and the period re-
mains constant, the phase velocity of the wave increases. In
other words, the deeper the pipeline, the slower the wave’s
velocity.

In this paper we assume the clocking distribution mecha-
nism of [12] is used to produce the Bennett clocking scheme
in the computational stages of the pipeline.

The Bennett scheme has two steps: computation and de-
computation. In the first step it performs the computation
on the inputs and propagates to the outputs without deleting
the intermediate results. In the second step the intermediate
results are decomputed by the clock “backing off”. In other
words, the release of the cells starts from the outputs and
retreats to the inputs, eventually releasing the whole circuit.
This process does not delete any information because every
cell that is released can “copy” its contents to the still locked
cell that produced the information in the cell being released.
This process prevents the information from being thermalized
[6].

This discussion leads to several points worth mentioning,
some of which have been mentioned explicitly and some
only implied: circuits implemented with Bennett clocking
do not dissipate energy over the course of a computa-
tion/decomputation cycle; at the end of a Bennett region’s
computation/de-computation cycle, both the original input and
the output are stored; and finally, the speed of computation is
a consequence of the time required for the clocking signals to
propagate back and forth across the region. Further, it is not
necessary to make any modifications to an irreversible QCA
circuit in order to make it reversible. In this case, reversibility
is caused by the clock rather than by the circuit, avoiding
the circuit bloating required for reversibility with Landauer
clocking.

Moreover circuits clocked with the Bennett scheme have
also an important advantage that the circuit does not require
any modification to the layout to avoid deleting the information
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Fig. 6. Clocking wave for the Bennett scheme. T represents the time period
of the pipeline stage.

Fig. 7. Clock signal to the buried wires

included in the inputs as it would happen if the inputs needed
to be propagated to the outputs. The power dissipated when
losing a bit of information is almost equal to the kink energy
Ediss ' Ek � KTln2. The value of the dissipated energy is
obtained from the non equilibrium equation i.e. a set of first-
order differential equations for the coherence vector of QCA
cells in contact with the thermal environment [13].

The Bennett scheme can be implemented using Hennessy’s
clocking implementation strategy by applying suitable signals,
Φ1...Φn, (figure 7) to the buried wires. The signals needed to
produce the Bennett style clock are very different from the
signals needed to produce a Landauer style clock. For the
Bennett clock, once the QCA cells have been locked, they
must remain locked throughout the rest of the computation
phase and be released in the decomputation phase as described
earlier (figure 6).

The pattern of waveforms present on each wire required to
produce this effect can be seen in figure 7. Notice that Φi

remains high at Vmax until Φi+1 goes to Vmin.
With this clocking scheme, data are output from the stage

at every period t = T , which is the time required for the
clock to sweep forward and latch the output and then retract
back decomputing all intermediate solutions. An approximate
analytical expression describing the clocking wave Ez(x, t)
during one period Tb is the following

Ez(x, t) = E0

(
1− u0

(
x

λc
− triTb

(t− Tb

2
)
))

where u0 is the Heaviside step function triT is the triangular

function of width T and λc is the width of the Bennett-clocked
region. The use of u0 represents an approximation on the use
of smooth transitions of duration t∗.

As discussed above, to preserve adiabaticity, the switch time
on a cell must be at least t∗. Therefore, considering d the
lateral size of a QCA cell, and N = λc/d the width of the
Bennett-clocked region in number of cells, the period can be
defined by:

Tb =
2λ

d
t∗ = 2Nt∗.

B. Memory Stages

The memory stages are a single buffer register used to
separate the different stages of the pipeline. The memory
stages provide the inputs to the Bennett clocked zones and
latch their outputs. Their implementation is straightforward as
they could in principle be implemented with a single vertical
row of QCA cells, or the minimum number of cells related to
the achievable pitch of the clocking wires.

In the simplest design, the contents of the latch would be
overwritten on each cycle when the new input was stored. This
would result in the dissipation of the number of bits stored in
each latch multiplied by the number of latches. However, the
properties of QCA cells and the clock can be exploited to
minimize this dissipation.

As shown in Figure 8 the clocking signal is sinusoidal with
the same period T of the Bennett clocking scheme. Rather
than using the traditional QCA circuit design methodology
where completely locked cells are used to drive the value of
its neighboring switching cells that have fully relaxed cells on
their other side, an asymmetric interaction is used. In this case,
the cells that would normally be in the relax phase (having no
value) are instead in the process of releasing their values while
the latch is assuming its values. The directionality of the circuit
is preserved because the signal from the driver cell is still much
stronger than that of the releasing cell. However, if the data
being released is the same as the new data being latched, that
bit will not be dissipated. Instead, it will be “copied” into the
new bit being stored.

The signals applied to each buried clocking wire to achieve
this asymmetric interaction are shown in figure 7. Phase Φ1 of
stage j + 1 releases the information contained in it while the
memory stage is switching and the the phase Φn of stage j is
in hold phase. This should allow the new value to propagate
appropriately to the stage j while avoiding the deletion of the
information in stage j + 1 when the value is the same.

A sketch of the propagation in the two opposite directions
is shown in figure 9 where two opposite values are interacting
on the memory cells in the middle. Since the cell on the left
locks its value (attains the hold phase) earlier than the one on
the right, the Coulombic interaction (quadripole moment) on
the memory cell is stronger and therefore it should cause the
memory cell to assume its value.

IV. PERFORMANCE EVALUATION

The performances of the proposed solution are evaluated
both in terms of throughput and power consumption. These
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Fig. 8. Clocking signal for the memory zones

Fig. 9. Asymmetric interaction on the memory cell

two factors are in conflict with each other here. Increasing the
number of pipeline stages leads to higher throughput. How-
ever, increasing the number of pipeline stages also increases
the amount of discarded information, leading to higher power
consumption. Therefore the number of stages chosen is the
outcome of a trade off between computing performances and
power consumption.

Fig. 10. Pipelined stages with Bennett clocking

Consider a pipelined circuit with no feedback loops com-
posed of M stages and o outputs. Recall that the period of a
Bennett stage is Tb = 2Nt∗. The throughput is described by:

Tr =
o

Tb
=

o

2Nt∗
.

The initial latency Lb is proportional to Tb/2 (figure 10):

Lb =
MTb

2

Fig. 11. Possible shape of P (t)

Fig. 12. Case Study: XOR tree parity checker

For the same M staged pipeline the power consumption P (t)
can be described as a function of time as follows:

P (t) = Ediss ·
∞∑

j=0

M−1∑
i=0

Ki(t)δ(t−
jTb

2
) (1)

where Ki(t) is the number of inputs on stage i that change
value at time t, Ediss is the energy dissipated (thermalized)
when a bit is deleted on the stage registers.

The time varying value of Ki(t) accounts for the random
time variability of the data in the pipeline on the memory stage
i. On average, and it can be thought of as being equal to half
of the bits stored in the memory. The power dissipation of a
circuit is therefore spatially localized on the memory stages
and is a time varying function composed of a train of pulses
accounting for the dissipation occurring at the discrete time
instants t = jT/2, where j is an integer, on the memory stages.
Figure 11 shows a possible shape of the P(t) not related to a
specific circuit implementation. Note also that, as can be seen
in Figure 10 at each t = jT/2 the power dissipation occurs
only on bM/2c i.e. at the same the deletion of data occurs
only in that half of the memory stages where the computing
and the decomputing waves meet. Consequently, at a given
time t = nT/2 the actual number of coefficients Ki(t) 6= 0 is
bM/2c.

V. CASE STUDY: PARITY CHECKER XOR TREE

The size of the zones clocked with the Bennett scheme can
vary from a minimum of two QCA cells size (the one cell
case would be degenerated into a Landauer scheme and the
clock would be a traveling wave) to the size of the whole
circuit (thus becoming a purely Bennett clocked circuit). As
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stated previously, we expect that by increasing the size of
the zones the throughput and the power consumption would
both decrease, degrading throughput while improving power
consumption.

It should be noticed that the contribution to power dissipa-
tion strongly depends on the circuit layout: a circuit composed
of only wires and inverters and thus composed of only
reversible building blocks, would have the best performances
with Landauer clocking as no information would be deleted
apart from the I/O whereas a circuit comprising Majority
voters would require the introduction of a Bennett scheme to
reduce the dissipation due to the deletion of information. To
have some advantage in power dissipation a Bennett clocked
stage should have a number of MVs big enough such that the
number of bits of information that would be deleted in that
stage using Landauer clocking is significantly higher than the
number of inputs deleted in the Bennett stage. Note that the
number of bits deleted in a stage is not necessarily equal to
the MVs as shown in the next example.

We show a simple example of the proposed approach. An
M stage binary tree composed of XOR gates generates the
parity bit for w = 2M inputs. We report a worst-case analysis
of throughput and power dissipation of the XOR based parity
bit generator by using the previously introduced formulas.

The same XOR tree is considered with different clocking
schemes. Landauer clocking is used to provide an irreversible
base case for comparison. For the Landauer clocked case, the
throughput is

Trl =
1
Tl

,

where Tl is the period of the Landauer clocking wave, and
one result is output on each cycle after the pipeline has been
filled.

With the Bennett scheme, throughput and power consump-
tion depend on the period of the Bennett clocked regions.
The period depends on the width of those regions. Here, we
consider Tb = 2Nt∗, where N is the number of XOR gates-
wide the region is. Since the same circuit is being compared,
there is again one output per clock period. In other words,

Trb =
1
Tb

=
1

2Nt∗
.

For both the Landauer and Bennett clocked cases, the worst
case dissipation for an XOR gate is 2Ediss. This is arrived at
in different ways, though. For the Landauer case, consider the
internals of the XOR function. One implementation is

XOR(A,B) = (NOT (A)ANDB)OR(AANDNOT (B)).

This implementation uses two AND gates and one OR gate
(figure 13). At most, the combination of inputs leads to a
dissipation of 2Ediss. The Bennett case is simpler in that there
are two inputs to each XOR gate. No dissipation will occur
within the XOR gate, but the inputs may be written over on
the next cycle. This, then, also leads to a worst case dissipation
of 2Ediss.

To compare the power performances of a M stages binary
XOR tree clocked with the Landauer and Bennett schemes
also the following assumptions and definitions are used:

Fig. 13. Dissipation in the XOR gate

1) the dissipated energy of a thermalized bit of information
is considered equal to the kink energy, i.e. Ediss ' Ek

2) the kink energy value is Ek = 3.14577 · 10−20 Joule
obtained for a molecular squared cell of lateral size l =
1.5nm [15] and relative permittivity εr = 1 (no dielectric
material between cells)

3) the number of stages of the XOR tree is k;
4) the number of stages of the pipeline is M ;
5) the number of stages of the XOR tree per pipeline stage

is c = k
M

6) the values of dissipated energy are calculated over the
respective period of computation for each scheme, the
corresponding power values are considered averaged on
the same period

7) since we are considering the worst case scenario, the
value of Ki(t) from equation 1 is non time dependent
therefore the deleted information is always equal to the
number of inputs of stage i

From the previous assumptions and from equation 1 the
energy dissipated in a period Tb for Bennett clocked scheme
in the XOR binary tree is calculated as follows:

EB =
∫ Tb

0

PB(t)dt

= 2Ek

∫ Tb

0

∞∑
k=0

M−1∑
i=0

Ki(t)δ(t−
kTb

2
)dt

= 2Ek

M−1∑
i=0

Ki(Tb/2) + Ki(Tb)

= 2Ek

M−1∑
i=0

2ic

= 2Ek
2cM − 1
2c − 1

where the formula for the sum of a geometric progression of
ratio 2c has been used.

Similarly the energy dissipated in a Landauer clocked binary
tree is also the sum on the energy dissipated on the whole
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Fig. 14. Throughput comparison

Fig. 15. Comparison of Energy dissipation per period

binary tree:

EL =
∫ Tl

0

PL(t)dt

= 2Ek

M−1∑
i=0

2i

= 2Ek(2M − 1)

A brief note is called for on the result figures. Figures 14
through 18 show the effect of keeping the circuit size (k)
constant and varying the number of pipeline stages (M ) and
consequently the number of XOR gates per pipeline stage
(c). Although only the integer values of c are meaningful,
the intermediate values are also shown to better show the
trends. In addition, since the parameter c applies only to the
Bennett clocked approach, the results for the Landauer clocked
approach are constant.

Figure 14 shows a comparison of the throughput in the
Bennett and Landauer schemes. As expected, the Landauer
scheme shows higher throughput and the gap between the
performances increases with the increase of c. In other words,
as the pipeline stages get wider and the depth of the pipeline
decreases, the throughput decreases.

Figure 15 shows the advantages of the Bennett scheme as a
measure of the dissipated energy per period of computation. As

Fig. 16. Comparison of Power dissipation

Fig. 17. Comparison of operations per joule

the pipeline depth decreases (c increases), the power dissipated
per period of operation improves since there are fewer latches
whose contents are being dissipated. Notice that even when
the entire circuit is in one Bennett stage, the dissipation does
not drop to zero because the original inputs are still being
deleted every Tb.

Figure 16 compares the power dissipation computed as the
ratio between the energy dissipated per period and the time
length of a computation period Tl and Tb. Again, the curves
show that the power dissipation for Bennett clocking improves
with the increase of c.

There is another important perspective from which one
could ask questions about power consumption. That is, how
much computing can be done given a unit of energy? Figure
17 shows the operations per joule obtained by both XOR tree
approaches, considering the “amount of computing” to be the
number of output bits obtained. The results again show that the
shallow, Bennett clocked pipeline is more energy efficient than
the Landauer clocking approach or deeper Bennett pipelines.

Finally figure 18 addresses the question “Given a second of
time and a Joule of energy, what is the amount of operations
(output bits) obtained?” thus introducing also a time factor
to the evaluation of the approaches. In this case the results
show an interesting intersection of the two curves introducing
a watershed between the values of c for which Landauer
clocking has better performances (c ≤ 6) and the those for
which Bennett clocking behaves better (c > 6). This result can
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Fig. 18. Comparison of operations per joule per second

be explained as follows: for low values of c the throughput
advantages of using a pipelined approach with the Bennett
scheme are not sufficient to overcome the penalty in terms
of power dissipation, with the increase of the size of the
pipeline stages (higher c) the advantages in terms of power
dissipation have a bigger impact with respect to the reduction
in performances.

VI. CONCLUSIONS

This paper introduced a pipelined architecture for low power
QCA circuits using the Bennett clocking scheme, a clocking
scheme that allows intermediate results to be decomputed
rather than erased which avoids power dissipation due to the
destruction of information. This architecture allows designers
to tune the reversibility of the system based on whether
throughput or power consumption are the most important
factors.

Combining the Bennett clocking scheme and pipelining
introduces flexibility into the design space and allows the
tradeoff between power and throughput to be meaningfully
analyzed and made. This work provides the metrics by which
to evaluate the throughput and power consumption of these
two architectural approaches. With careful analysis of the
proposed circuit, the Bennett clocked pipeline stages can
provide substantial power savings over a Landauer clocked
circuit, giving the designer the power to tune the clocking
approach to balance constraints on throughput and power
consumption.
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