
J Sign Process Syst
DOI 10.1007/s11265-010-0537-y

Optimized Implementation of RNS FIR Filters
Based on FPGAs

Salvatore Pontarelli · Gian Carlo Cardarilli ·
Marco Re · Adelio Salsano

Received: 12 November 2008 / Revised: 13 September 2010 / Accepted: 17 September 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper optimized Residue Number
System (RNS) arithmetic blocks to better exploit some
of the architectural characteristics of the last gener-
ation FPGAs are presented. The implementation of
modulo m adders, modulo m constant and general
multipliers, input and output converters are presented.
These architectures are based on moduli sets chosen
in order to optimally use the 6-input Look-Up Tables
(LUTs) available in the Complex Logic Blocks (CLBs)
of the new generation FPGAs. Experiments based on
the implementation of Finite Impulse Response (FIR)
filters characterized by different number of taps and
wordlengths shows that the use of RNS together with
suitable moduli sets optimally fits the 6-input LUTs in
the last generation FPGAs architectures.

Keywords Residue Number System · FPGA ·
FIR filters

S. Pontarelli (B)
(ASI) Italian Space Agency, Viale Liegi,
26 00198 Rome, Italy
e-mail: pontarelli@ing.uniroma2.it

G. C. Cardarilli · M. Re · A. Salsano
Department of Electronic Engineering,
University of Rome “Tor Vergata”,
Via del Politecnico 1, 00191, Rome, Italy

G. C. Cardarilli
e-mail: g.cardarilli@ieee.org

M. Re
e-mail: marco.re@ieee.org

A. Salsano
e-mail: salsano@ing.uniroma2.it

1 Introduction

The silicon integrated circuits trend is characterized
by a steady reduction in the feature size combined
with a steady rise in density and speed as shown in
[1]. In the last twenty years FPGAs evolved rapidly
in terms of complexity and architecture starting from
the first FPGA, the Xilinx XC2064 chip with its 1,000
gates of complexity (http://www.xilinx.com/company/
history.htm) to the newest generations. The major evo-
lution was related to the structure of the interconnect,
the topology of the basic cell i.e., the Logic Element
(LE), and the introduction of full custom processing
elements such as multipliers, hardware processor cores,
MAC units, and very high speed serial I/O blocks. One
of the last innovation in the FPGAs LE architecture
has been the introduction of 6-inputs LUTs as the main
block for the implementation of combinatorial func-
tions [2]. In this paper it is shown how this characteristic
is exploited when a RNS representation based on suit-
able moduli sets is used for the implementation of the
elementary arithmetic operators. In fact, changes in the
FPGAs architecture require changes in the synthesis
algorithms in order to guarantee an optimum mapping
on the available resources.

Even if FPGA implementation of RNS systems has
been proposed in literature such as [3–5], these papers
do not focuses the attention of the relationship between
the choice of moduli set, the architectural choice of the
basic arithmetic blocks of RNS systems and the result
achievable on the FPGA.

In [6] the FPGA implementation of RNS filter on an
FPGA by using moduli that are power of two or power
of two minus one is presented. The paper exploit ad-
ditional RAM block available on FPGA to implement

http://www.xilinx.com/company/history.htm
http://www.xilinx.com/company/history.htm

J Sign Process Syst

forward and reverse conversion and also coefficient
multiplication. The drawbacks of this approach are:

• the limited number of RAM blocks available on
FPGA. In fact, the number of used block RAM is
dependent from the number of taps of the filter and
therefore this method cannot be applied for filter
with an high number of taps,

• no effort has been done to select the implementa-
tion of modular adder that better exploit the FPGA
characteristic,

• no optimization of the whole structure of the mod-
ulo FIR filters has been proposed

Also here the block RAMs available on the FPGA
are exploited but no effort in the choice of the moduli
set that best fit the FPGA resources has been done.
In this paper an analysis of the basic building blocks
of RNS filter (modulo addition and multiplications) is
carried out with emphasis of the relationship between
the target technology (the six input LUTs) on one hand
and the chosen architectures and moduli set on the
other hand. After this analysis the design methodology
of an optimized RNS filter is presented. The paper
is organized as follows: in Section 2 a background on
the RNS arithmetic is given. In Section 3 architectures
and performance of 6-inputs LUT based implementa-
tions of modulo m arithmetic operators such as adders,
constant multipliers and general multipliers are dis-
cussed together with a comparison with implementa-
tions based on 4-input LUTs. Section 4 illustrates the
implementation of the RNS input and output convert-
ers and discusses the obtained area and speed results.
Conclusions are drawn in Section 5.

2 Background on Residue Number System

A Residue Number System (RNS) composed of P mo-
duli is defined by a set of P relatively prime integers:

{m1, m2, ..., mP}

The dynamic range of the system is given by the product
of the moduli mi

M =
P∏

i=1

mi

Any integer X ∈ [0, M − 1] has a unique RNS rep-
resentation given by

X
RNS−→ (〈X〉m1

, 〈X〉m2
, . . . , 〈X〉mP

) (1)

where 〈X〉mi
= X mod mi. In the paper we also use the

compact notation Xmi.
A comprehensive description of the RNS theory and

its application to computer systems can be found in [7,
8], and [9]. In the RNS representation, operations, such
as addition and multiplication, are executed in parallel
on the different moduli

Z = X op Y
RNS−→

⎧
⎨

⎩

Zm1 = 〈
Xm1 op Ym1

〉
m1

. . .

ZmP = 〈
XmP op YmP

〉
mP

(2)

where Eq. 2 is valid until the results that must be con-
verted in the Two’s Complement representation (TCS)
are in the range [0, M − 1]. The conversion in TCS
is accomplished by the Chinese Remainder Theorem
(CRT)

Z =
〈

P∑

i=1

〈
Zmi · ki

〉
mi

· Mi

〉

M

(3)

with Mi = M
mi

and ki, the multiplicative inverses, are
obtained by 〈Mi · ki〉mi

= 1.
Clearly, conversions from the binary representation

to RNS, and vice-versa, constitute an overhead for
systems based on the RNS representation. However,
efficient methods to perform those conversions have
been studied [10–12].

3 Modulo m Operations Based on 6-input LUTs

It is well known that the architecture of an FPGA is
based on an array of logic blocks interconnected in a
flexible way by using programmable interconnection
resources. The basic logic resources on FPGAs are the
LEs. In FPGAs LEs are often realized by using LUTs.
The LEs of the last generation FPGAs are based on
6-input LUTs (useful to implement 6-input one output
combinatorial functions) that can be also configured as
double 5-input LUTs (useful to implement five inputs
double output functions) [2, 13]. On the other hand
it is well known that RNS arithmetic is particularly
suitable for LUTs based implementations because it is
based on computations that uses several small value
moduli working in parallel (Section 2). So FPGAs, and
in particular the new families of FPGAs are very good
candidates for the implementation of RNS based arith-
metic units. An optimum use of the FPGA resources in
RNS implementations can be consequently obtained by
a suitable selection of the moduli set i.e. by choosing mi

such that they can be represented by using maximum
5 or 6 bits (i.e. moduli in the range [17, 64]). In the

J Sign Process Syst

rest of the paper the following arithmetic blocks are
analyzed

1. Modulo m adders
2. Modulo m constant multipliers (constant coeffi-

cients FIR filters)
3. Modulo m general multipliers (variable coefficients

FIR filters)

3.1 Modulo m Adders

In this subsection modular adders are addressed.
Specifically the two most used architectures are illus-
trated and a new architecture based on LUTs is pro-
posed. If a modulus m is chosen such that 2n−1 < m ≤
2n, the range of the results of operations mod. m is
[0, 2n − 1] and therefore n bits are used to represent
the intermediate results. The implementation of the
operation 〈X + Y〉m is usually realized by the compu-
tation of the two intermediate results S1 = X + Y and
S2 = X + Y − m. Two different architectures can be
used as shown in Fig. 1

1. Serial architecture: it is composed by two n-bits
adders and a multiplexer (Fig. 1a). The first adder
computes S1 = X + Y, the second one uses S1 to
compute S2 = S1 − m and the 2 × 1 multiplexer
selects S1 or S2 depending on the carry out of S2.
If the carry is one then S1 > m and S2 is selected as
output, otherwise S1 is selected.

2. Parallel architecture: it is composed by a two
operands adder, a three operands adder and a
multiplexer (Fig. 1b). The two operands n-bits
adder computes S1 = X + Y, the three inputs n-
bits adder directly computes S2 = X + Y − m and
the 2 × 1 multiplexer selects S1 or S2 depending on
the the carry out of S2. This structure requires more
logic resources but due to the parallelism is faster
than the serial one.

In this section a different architecture is presented
to compute 〈X + Y〉m obtaining a delay comparable
to that of the parallel architecture by using the same

Figure 2 The ROM based modulo m adder.

resources of the serial one. The architecture is shown
in Fig. 2. The inputs X and Y are added obtaining S,
then the mod. m operator is implemented by using a
ROM. In the ROM locations, for each value of S, the
corresponding value S mod. m is memorized.

For a 5 bits modulus the ROM can be directly imple-
mented by using 6-input LUTs, in fact, the ROM size is
26 · 5 corresponding to five 6-input LUTs, while for a 6
bits modulo the size of the ROM is 27 · 6, corresponding
to 12 6-input LUTs. The growth of the ROM size is
exponential, but for moduli up to 64 this structure is
slightly convenient with respect to the parallel imple-
mentation as shown in Table 1. This table shows the
synthesis results in terms of number of LUTs and delay
for different values of 5 and 6 bits moduli in comparison
with the parallel modulo adder implementation.

In the case of 5 bits moduli the ROM-based imple-
mentation requires 33% fewer resources and the same
delay of the parallel one, while for 6 bits moduli the
comparison shows similar numbers between the two
implementations. Moreover, it can be noticed that the
synthesis tool simplifies the architecture of the modulo
m adder when m = 2n. The synthesizer uses LUTs also
in the generation of the adders so, for a 5 bits adder
5 LUTs to implement the FAs are used while the carry
chain is implemented by using fast carry chain resources
available in the FPGA. Obviously, depending on the
modulus value, the synthesizer is able to optimize the
resources and the final number of LUTs is, in some
cases, smaller than the value obtained by summing the
number of LUTs for the ROM based modular extrac-
tion plus those used for the adder implementation.

Now we compare the used resources and delay of
modular adders implemented on FPGA based on 4
and 6-input LUTs. The performance of papallel and

Figure 1 a The serial modulo
m adder b The parallel
modulo m adder.

J Sign Process Syst

Table 1 Area and delay of parallel and ROM based modulo
adders implemented on a Xilinx Virtex V FPGA (6-input LUTs).

Number m Parallel mod. ROM based mod.
of bits adder adder

Delay (ns) #LUT Delay (ns) #LUT

5 17 1.58 15 1.53 10
5 19 1.59 15 1.53 10
5 23 1.59 15 1.53 10
5 29 1.61 15 1.53 10
5 31 1.62 15 1.55 10
5 32 0.68 5 0.68 5
6 33 1.76 15 1.72 16
6 35 1.77 18 1.77 18
6 61 1.73 15 1.64 16
6 63 1.71 16 1.62 15
6 64 0.90 6 0.90 6

ROM based adders are presented in Table 1 for 6-input
LUTs and in Table 2 for 4-input LUTs. The results
shows that in the case of 4-input LUTs the parallel
modulo adder is better because it exploits the use of
the additional carry logic available in FPGAs, while the
implementation based ROMs requires to interconnect
several LUTs to achieve the address space. Instead, for
6-input LUTs implementations, the number of LUTs is
reduced, compensating the advantage of the carry logic
used in the parallel adder implementation. This result
shows that for the dynamic ranges useful in DSP im-
plementations the new FPGAs based on 6-input LUTs
offer interesting advantages in the implementation of
RNS arithmetic units.

3.2 Modulo m Multipliers: Constant Coefficients

In this section constant coefficients and general mul-
tipliers are presented. They are used to implement

Table 2 Area and delay of a parallel and ROM based modulo
adders implemented on a Xilinx Virtex IV (LE based on 4-input
LUTs).

Number m Parallel mod ROM based mod
of bits adder adder

#LUT Delay (ns) #LUT Delay (ns)

5 17 16 3.187 23 3.088
5 19 16 3.187 24 3.086
5 23 16 3.187 23 3.088
5 29 16 3.187 22 3.084
5 31 16 3.187 23 3.086
5 32 5 1.525 5 1.525
6 33 19 3.231 44 3.763
6 35 19 3.231 46 3.853
6 61 19 3.231 37 3.550
6 63 19 3.231 33 3.172
6 64 6 1.559 6 1.559

RNS FIR filters with constant coefficients. If n is the
number of bits used to represent m, 〈X · K〉m requires
n output bits. If n = 6, it can be realized by using a
26 × 6 ROM that, in the case a Xilinx Virtex V FPGA
is implemented by addressing six 6-input LUTs with a
delay of about 0.8 ns. Due to extreme simplicity of such
structure no optimization can be performed at the level
of the single coefficient.

3.3 Modulo m Multipliers: Variable Coefficients

In this subsection are analyzed the implementation of
general multipliers using a 6-input LUTs FPGA. If m
is a prime number (6 bit) the isomorphism technique
[7] can be used to perform the multiplication. This
technique is based on the algebraic properties of the
structure composed by the modulo m addition and mul-
tiplication and the numbers in the interval [0, m − 1].
In fact the ring is a finite field of characteristic m and
therefore

1. each element different from zero has a multiplica-
tive inverse

2. it exists an element of the field, called α, such
as ∀x ∈ [1, m − 1] ∃ i | αi = x and αm = α. The
modulo m multiplication of two numbers becomes
〈x × y〉m = 〈

αi × α j
〉
m = 〈

αi+ j
〉
m and because αm =

α the addition of i + j is performed mod. m − 1.

The architecture of the isomorphic multiplier is
shown in Fig. 3. The blocks named Log (based on
LUTs) performs the association between the value X
and Y and the corresponding indexes i and j, while
the block αk performs the inverse association between
the result of 〈i + j〉m−1 and the value αk. Some addi-
tional logic manages the case in which one or both
the operands are zero. The mod. m − 1 adder can be
implemented by using either the parallel and the ROM

Figure 3 The modulo m multiplier based on the isomorphism
technique.

J Sign Process Syst

Figure 4 The isomorphic based modulo m multiplier with ROM
based modulo addition.

based modulo adder. If the ROM based modulo adder
is used, the two ROMs, the first one performing the
operation 〈·〉m−1, the second one the inverse isomor-
phism, can be combined in a single ROM obtaining an
optimization with respect to the multiplier based on the
parallel modulo adder (Fig. 4).

Synthesis results show that this implementation re-
quires the use of about 30 LUTs and a delay of about
3 ns instead while the parallel implementation requires
36 LUTs with a delay of 3.8 ns. Therefore, by combining
the two ROMs the architecture is about 20% faster and
shows a 15% of resource savings.

4 FIR Filter Implementation

A N taps FIR filter is described by

y(n) =
N−1∑

k=0

hk · x(n − k) (4)

Its fixed point implementation, in transposed or di-
rect form, is obtained by using multipliers adders and
registers and, in parallel implementations, the reduc-
tion of the used resources is usually accomplished by
truncating the multipliers outputs. The number of trun-
cated bits is the result of a fixed point optimization
phase that is based on a trade-off between resource
savings and signal to noise ratio worsening [14]. The im-
plementation of RNS FIR filters is a direct consequence
of Eqs. 2 and 4 obtaining

〈y(n)〉m1
= ym1 =

〈
N−1∑

k=0

〈〈hk〉m1
· 〈x(n − k)〉m1

〉
m1

〉

m1

. . .

〈y(n)〉mP
= ymP =

〈
N−1∑

k=0

〈〈hk〉mP
· 〈x(n − k)〉mP

〉
mP

〉

mP

(5)

i.e. the filter is implemented by P FIR filters working in
parallel, as sketched in Fig. 5 (P = 3).

The input conversion is obtained by the reduction
modulo mi of x(n), providing the residue digits xmi . The
mod. mi RNS filters compute the residues ymi defined
in Eq. 5, while the output conversion based on Eq. 3
computes back y(n). The implementation of FIR filters
based on the RNS representation requires the following
blocks

1. Binary to RNS converter
2. Mod. mi FIR filters
3. RNS to binary converter

In this section these components are analyzed and an
optimized RNS filter is proposed.

4.1 Input Converter

The input converter is composed by P independent
blocks that compute

xmi = 〈x(n)〉mi
=

〈
L−1∑

k=0

2k · xk(n)

〉

mi

(6)

where L is the number of bits used to represent the
input samples. This equation can be rearranged in
different ways depending on how the modulo operator
is applied to the equation. The basic technique that can
be used in a ROM based approach, is to partition the
L bits input word into S sub-blocks each one composed
by b bits. Each group of b bits will address a ROM.
In our case, to fully exploit the characteristics of 6-
input LUTs, up to 6 bits moduli can be used but the
best performances are obtained by using 5 bits moduli.
Consequently, in the following example where a 15 bits
input converter is used to illustrate the ROM based

Figure 5 RNS implementation of a FIR filter.

J Sign Process Syst

Figure 6 Architecture of a 15
bits modulo m reduction
block.

technique, b = 5. In this example the reduction mod.
mi is computed by

xmi =
〈〈〈

x[4..0]
〉
mi

+ 〈
x[10..5] · 25

〉
mi

〉

mi

+ 〈
x[14..10] · 210

〉
mi

〉

mi

(7)

The converter architecture is shown in Fig. 6 and
it is implemented by using three 25 × 5 bits ROMs (9
LUTs, in fact the 6-input LUTs can be reconfigured
as two out 5-input LUTs), two 26 × 5 ROMs (corre-
sponding to 10 LUTs) and two adders, while the critical
path is composed by three ROMs and two five bits
adders.

By manipulating Eq. 7,

xmi =
〈
x[4..0] + 〈

x[10..5] · 25
〉
mi

+ 〈
x[14..10] · 210

〉
mi

〉

mi

an optimized version (Fig. 7) of the modulo reduction
block is obtained.

In this case, the used resources are: two 25 × 5
ROMs (6 LUTs), one 27 × 5 ROM (10 LUTs) and two
adders. The number of LUTs to implement the ROMs
decreases from 19 in the first architecture to 16 while
the critical path is now composed by a six bits adder, a
seven bits adder and two levels of ROMs.

4.2 Modulo mi Filters

The filters mod mi implementing Eq. 5 are depicted in
Fig. 8. The shaded area in Fig. 8 is the basic building
block i.e. the mod. mi tap of the filter, xmi derives from
the input converter and sin is the output of the previous
tap while the output of the tap is sout.

The filter tap implements the equation

sout(j) = xmi · h j + sin = xmi · h j + sout(j − 1) (8)

where sin = sout(j − 1) and the filter coefficients are
h j = 〈

h j
〉
mi

. As stated above, the moduli set is composed
by prime numbers and by one power of two modulus. In
the case mi = 2n the tap implementation resources and
delay performance are shown in Table 3.

The modulo mi tap, when mi 	= 2n, has been opti-
mized by using a method similar to that used for the
general multiplier presented in the previous section.
In the following, the analysis is restricted to moduli
being prime numbers to permit the use of the isomor-
phism technique. For constant coefficients filters, the
tap (Fig. 8) requires a ROM and a modular adder that
can be either a parallel or a ROM based adder.

Equation 8 can be rewritten as

s(j) = h j ·
(
xmi + h−1

j · s(j − 1)
)

(9)

where h−1
j is the multiplicative inverse of h j mod. mi.

Figure 7 Optimized
implementation of a 15 bits
modulo reduction block.

J Sign Process Syst

Figure 8 Architecture of a
modulo mi FIR filter.

Defining s̃(j) = h−1
j+1 · s(j) and substituting s̃(j) and

s̃(j − 1) in Eq. 9 we obtain:

h j+1 · s̃(j) = h j ·
(
xmi + s̃(j − 1)

)
(10)

and defining h̃ j = h−1
j+1 · h j Eq. 10 becomes:

s̃(j) = h̃ j ·
(
xmi + s̃(j − 1)

)
(11)

In this way for the intermediate slices the tap can be
implemented as depicted in Fig. 9.

The optimized slice of the modulo mi filter is imple-
mented using a ROM based modular adder. The inputs
of the adders are xmi(n) and s̃(j − 1) and the output
of the sum addresses the ROM. The ROM stores the
values of

〈
h̃ j · (xmi + s̃(j − 1))

〉
mi

.
For a 5 bits modulo the resource usage is 10 LUTs

(five 6-input LUTs for the modulo extraction and 5 for
the adder implementation) and the delay is about 1.5
ns, while for a 6 bits modulo the resource usage is about
16 LUTs and the delay is about 1.7 ns. In the case of
a variable coefficient filter two different optimizations
can be used: to reduce the resources and to reduce the
critical path. Figure 10 shows a tap for the variable
coefficients filter.

The Log operators are implemented by 2n × n
ROMs, the αk operator is a 2n+1 × n ROM performing
modulo reduction and exponentiation, the 〈 〉mi

opera-
tor is ROM based, the adders are n-bits adders, while
the critical path is composed by two adders and three
ROMs. The first optimization consists in sharing the
Log operator that is the same for all the slices com-

Table 3 Area and delay for a
tap in the case m = 2n.

n # LUTs Delay (ns)

5 5 0.6
6 7 0.72
7 9 1.25
8 12 1.25
9 18 1.38
10 50 3.22

posing the modulo mi filter. The second optimization is
obtained by balancing the paths of the slices moving the
ROM implementing the 〈 〉mi

operator after the delay
element. In this way the critical path is reduced to two
ROMs and two adders.

4.3 Reverse Converter

The reverse conversion is based on Eq. 3 and requires
three steps

1. computation of
〈
Zmi · ki

〉
mi

· Mi. It is realized by
using P ROMs of size 2n × l, where n is the num-
ber of bits used to represent the modulo and l =

log2(M)�. As described before, n is fixed to 5
bits, while the values of P and l depend on the
dynamic range of the FIR filter to be implemented.
By using P = 8 a dynamic range of up to 33 bits
is obtained by using the set of prime numbers
{31, 29, 23, 19, 17, 13, 11, 7}.

2. addition of the P values from step 1. It is imple-
mented by an adder tree (36 bits when P = 8).

3. reduction modulo M of the the value obtained in
step 2. This step is implemented in a way similar
to that used for the modulo reduction in the input
converter.

For P = 8 the reduction is performed as follows:

yM = 〈〈
y[32..0]

〉
M + 〈

y[35..33] · 233
〉
M

〉
M

Figure 9 Optimized slice of a modulo mi FIR filter with constant
coefficients.

J Sign Process Syst

Figure 10 Optimized architecture of a slice for a modulo mi
variable coefficients FIR filter.

where y[35..0] is the output of the step 2. The most sig-
nificant bits of the summation are therefore multiplied
for the constant value 233 modulo M using a 23 × 33
ROM and the last modulo M addition is performed by
using a parallel modulo adder.

The architecture of the output converter is shown in
Fig. 11. Each of the 8 ROMs has been implemented by
using 17 LUTs configured in dual output mode, while
the output LUT containing the term

〈·2l+1
〉
M requires

17 LUTs. The adder tree and the final parallel mod-
ulo adder require 222 LUTs and so the final number
of LUTs is 358. The delay of the circuit is 5.149 ns,
corresponding to a maximum clock frequency of 194
MHz. To speed up the architecture, a pipelined version
of the CRT has been implemented by using a four stage
pipeline. The obtained delay is 1.829 ns corresponding
to a maximum frequency of 545 MHz.

4.4 FIR Filters Experiments

A set of experiments for the characterization of FIR
filters implemented in RNS by using the techniques

presented in the paper are described. The experiments
set up is

• Type of filter: Full precision arithmetic (no trunca-
tion), transposed form filters.

• Coefficients/Input Samples wordlength: 8, 12 bits,
• Number of Taps: from 16 to 256,
• Moduli Set: 5 bits prime numbers, the bigger mod-

ulus is a power of two. The use of a power of two
modulus permits the simplification of the filter
mod. 2n (Table 3) and of the input and output con-
verters.

In Table 4 the dynamic range of the filter and the
chosen moduli set are shown.

For dynamic ranges up to 23 bits four moduli have
been used while for the biggest dynamic range (32 bits)
a maximum of seven moduli is required.

In Table 5 the performance of the filters in terms
of speed and resource usage are shown. The maxi-
mum frequency of the 8 bits filters (FIR1 to FIR5)
is bounded by the maximum operating frequency of
the slice (about 435 MHz), while for the 12 bits filters
(FIR6 to FIR10) the maximum frequency of the filter
is limited by the output converter speed (about 300
MHz). This drawback can be easily overcome by a one
level pipelining in the output converter.

In Fig. 12 the overhead due to the input and output
converters is shown. Figure 12 show a comparison be-
tween the number of LUTs required by the converters
and those required by the overall filter while in Fig. 13
the same results are represented in percentage.

Experiments FIR3 to FIR8 and FIR6 to FIR10 show
that the area overhead due to the conversion becomes
less than 10% when more than 64 taps are implemented

Figure 11 Implementation of
the output converter.

J Sign Process Syst

Table 4 Description of the set of FIR filters synthesis experiments.

FIR Input/coeff (bits) N. taps Number of bits Moduli set N. of moduli

FIR1 8 16 20 {64, 31, 29, 23} 4
FIR2 8 32 21 {128, 31, 29, 23} 4
FIR3 8 64 22 {256, 31, 29, 23} 4
FIR4 8 128 23 {512, 31, 29, 23} 4
FIR5 8 256 24 {64, 31, 29, 23, 19} 5
FIR6 12 16 28 {64, 31, 29, 23, 19, 17} 6
FIR7 12 32 29 {128, 31, 29, 23, 19, 17} 6
FIR8 12 64 30 {256, 31, 29, 23, 19, 17} 6
FIR9 12 128 31 {512, 31, 29, 23, 19, 17} 6
FIR10 12 256 32 {64, 31, 29, 23, 19, 17, 13} 7

Table 5 Resource usage and speed for the experiments.

FIR Number of bits Max. freq. Taps In converter Out converter Total resources
(MHz) (#LUTs) (#LUTs) (#LUTs) (#LUTs)

FIR1 20 435 592 30 182 804
FIR2 21 435 1,248 30 182 1,460
FIR3 22 435 2,688 30 182 2,900
FIR4 23 435 6,144 30 182 6,356
FIR5 24 435 12,032 40 224 12,296
FIR6 28 300 912 70 270 1,252
FIR7 29 300 1,888 70 270 2,228
FIR8 30 300 3,968 70 270 4,308
FIR9 31 300 8,704 70 270 9,044
FIR10 32 303 17,152 84 309 17,545

Figure 12 Converters
overhead.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

FIR1 FIR2 FIR3 FIR4 FIR5 FIR6 FIR7 FIR8 FIR9 FIR10

n
u

m
b

er
 o

f
L

U
T

s

Filter Name

resource occupation and overhead

total overhead

J Sign Process Syst

Figure 13 Converters
overhead in percentage.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FIR1 FIR2 FIR3 FIR4 FIR5 FIR6 FIR7 FIR8 FIR9 FIR10

n
u

m
b

er
 o

f
L

U
T

s

Filter Name

resource occupation and overhead

total overhead

and consequently the change of representation does not
represent a drawback in this kind of architectures.

Finally, we compare the obtained results with those
obtained by implementing the same experiments using
a TCS representation. In these comparison no trun-
cation is performed in the FIR filter. As indicated
in Section 2 usually truncation is used to limit the re-
sources in TCS filters but it has been shown in the liter-
ature [18] that truncation does not offset the advantages
of a RNS implementation in real applications where
N (the number of taps) is usually high. Moreover, the
RNS representation is often used to design filters with
error detection and correction capabilities [15–17]. In
those cases, the use of truncation is not allowed. The
results of the comparison in terms of resource occupa-
tion are shown in Table 6.

Table 6 Resource Comparison of RNS and TCS filters.

FIR TCS (#LUTs) RNS (#LUTs) Saving (%)

FIR1 788 804 −2
FIR2 1,800 1,460 18
FIR3 3,632 2,900 20
FIR4 6,966 6,356 8
FIR5 15,203 12,296 19
FIR6 1,899 1,252 34
FIR7 3,338 2,228 33
FIR8 6,555 4,308 34
FIR9 14,043 9,044 35
FIR10 29,234 17,545 40

The resource savings obtained by using RNS are
always greater than 30% when the dynamic range of
the input data is 12 bits, while in the case of 8 bits
the advantage depends on the filter length. For the
FIR1 there are no savings but a small increment in the
resources usage due to the overhead of the conversion
blocks but savings up to 20% are obtained for FIR5 and
FIR 3 experiments. The experimental results show that
the presented techniques give interesting advantages
for FIR filters characterized by high dynamic range and
high number of taps.

5 Conclusion

An optimization of Residue Number System (RNS)
arithmetic to better exploit some of the architectural
characteristic of the last generation FPGAs has been
presented. The basic arithmetic operations of RNS
(addition and multiplication) has been implemented by
using a ROM based approach. The paper shows that
this ROM based implementation achieve performances
better than the classical MUX based adders usually
proposed for ASIC implementations. In particular the
presented results show that the best performance are
obtained when 5 bit moduli are used. Using this ap-
proach based on ROM modular adders and multipliers,
different optimization techniques for the basic blocks
of RNS filters (modulo mi filters, forward and reverse
converters) has been presented and discussed. The

J Sign Process Syst

proposed optimization techniques has been applied
with a wide set of RNS filters showing that high speed,
low resource occupation RNS filters can be obtained by
using our techniques.

References

1. Allan, A., Edenfeld, D., Joyner, W., Kahng, A., Rodgers, M.,
& Zorian, Y. (2002). International technology roadmap for
semiconductors, IEEE Computer, 35(1), 42–53.

2. Cosoroaba, A., & Rivoallon, F. (2006). Achieving higher sys-
tem performance with the Virtex-5 family of FPGAs, Xilinx
WP245 (Vol. 1).

3. Re, M., Nannarelli, A., Cardarilli, G. C., & Lojacono, R.
(2001). FPGA Realization of RNS to binary signed conversion
architecture. In 2001 IEEE international symposium on circuits
and systems, Sydney, Australia, 6–9 May 2001.

4. Ramírez, J., Meyer-Bäse, U., Taylor, F. J., García, A., &
Lloris-Ruíz, A. (2003). Design and implementation of high-
performance RNS wavelet processors using custom IC tech-
nologies. The Journal of VLSI Signal Processing, 34(3),
227–237.

5. Ciet, M., Neve, M., Peeters, E., & Quisquater, J. J. (2003).
Parallel fpga implementation of RSA with residue number
systems—can side-channel threats be avoided? In: Proc. 46th
IEEE international midwest symposium on circuits and systems
MWSCAS 03, 27–30 Dec 2003 (Vol. 2, pp. 806–810).

6. Kaluri, K., Leong, W. F., Tan, K.-H., Johnson, L., & Soder-
strand, M. (2001). FPGA hardware implementation of an RNS
FIR digital filter. In Thirty-f ifth asilomar conference on signals,
systems and computers (Vol. 2, pp. 1340–1344).

7. Vinogradov, I. (1955). An introduction to the theory of num-
bers. New York: Pergamon Press.

8. Szabo, N., & Tanaka, R. (1967). Residue arithmetic and its
applications in computer technology. New York: McGraw-Hill.

9. Sodestrand, M., Jenkins, W., Jullien, G. A., & Taylor, F. J.
(1986). Residue number system arithmetic: Modern Applica-
tions in digital signal processing. New York: IEEE Press.

10. Vu, T. V. (1985). Efficient implementation of the chinese
remainder theorem for sign detection and residue decoding.
IEEE Transactions on Circuits Systems-I, 45, 667–669.

11. Piestrak, S. (1995). A high-speed realization of a residue
to binary number system converter. IEEE Transactions on
Circuits Systems-II Analog and Digital Signal Processing, 42,
661–663.

12. Cardarilli, G., Re, M., & Lojacono, R. (1997). A residue to
binary conversion algorithm for signed numbers. In: European
conference on circuit theory and design (ECCTD97) (Vol. 3,
pp. 1456–1459).

13. Logic array blocks and adaptive logic modules in Stratix III
devices chapter in volume 1 of the StratixIII device handbook.

14. Mitra, S. K., & Kaiser, J. F. (1993). Handbook for digital
signal processing. Wiley-Interscience.

15. Bandyopadhyay, S., Jullien, G. A., & Sengupta, A. (1988). A
systolic array for fault tolerant digital signal processing using
a residue number system approach. In: Proceedings of the in-
ternational conference on systolic arrays, 25–27 May 1988 (pp.
577–586).

16. Etzel, M. H., & Jenkins, W. K. (1980). Redundant residue
number systems for error detection and correction in digital
filters. IEEE Transactions on Acoustics, Speech and Signal
Processing, ASS-28(5), 538–544.

17. Pontarelli, S., Cardarilli, G. C., Re, M., & Salsano, A. (2008).
Totally fault tolerant RNS based FIR filters. In IEEE interna-
tional on-line testing symposium.

18. Nannarelli, A., Re, M., & Cardarilli, G. C. (2001). Tradeoffs
between residue number system and traditional FIR filters.
In: IEEE international symposium on circuits and systems,
ISCAS 2001, Sydney, Australia, 6–9 May 2001 (Vol. II,
pp. 305–308).

Salvatore Pontarelli received the Laurea degree in Electronic
Engineering from the University of Bologna in 1999 and the
Ph.D. in Microelectronics and Telecommunications Engineering
from the University of Rome “Tor Vergata” in 2003. Currently he
is have a post-doctoral fellowship with the Department of Elec-
tronic Engineering of the University of Rome “Tor Vergata”. His
research mainly focuses on fault tolerance, on-line testing and
reconfigurable digital architectures.

Gian Carlo Cardarilli received the Laurea (summa cum laude)
in 1981 from the University of Rome “La Sapienza”. He works
for the University of Rome “Tor Vergata” since 1984. At present
he is full professor of Digital Electronics and Electronics for
Communication Systems at the University of Rome “Tor Ver-
gata”. During the years 1992/1994 he worked for the University of
L’Aquila. During the years 1987/1988 he worked for the Circuits
and Systems team at EPFL of Lausanne (Switzerland). Professor

J Sign Process Syst

Cardarilli interests are in the area of VLSI architectures for
Signal Processing and IC design. In this field he published over
140 papers in international journals and conferences. Scientific
interests of Professor Cardarilli concern the design of special
architectures for signal processing. In particular, he works in the
field of computer arithmetic and its application to the design
of fast signal digital processor. He also developed mixed-signal
neural network architectures implementing them in silicon tech-
nology. Recently, he also proposed different new solutions for
the implementation of fault-tolerant architectures.

Marco Re received the Laurea degree in Electronic Engineering
from the University of Rome “La Sapienza” in 1991 and the
Ph.D. in Microelectronics and Telecommunications Engineering
from the University of Rome “Tor Vergata” in 1996. In 1998 he
joined the Department of Electronic Engineering of the Univer-
sity of Rome “Tor Vergata” as Researcher. He was awarded two
one-year NATO fellowships with the University of California at
Berkeley in 1997 and 1998. His main interests and activities are in
the area of DSP algorithms, fast DSP architectures, Fuzzy Logic
hardware architectures, Hardware-Software Codesign, Number
Theory with particular emphasis on Residue Number System,
Computer Arithmetic and Cad tools for DSP, Fault Tolerant and
Self Checking circuits. He has authored and coauthored more
than eighty papers.

Adelio Salsano was born in Rome on December 26, 1941 and
is currently full professor of Microelectronics at the Univer-
sity of Rome, “Tor Vergata” where he teaches the courses
of Microelectronics and Electronic Programmable Systems. His
present research work focuses on the techniques for the design
of VLSI circuits, considering both the CAD problems and the
architectures for ASIC design. In particular, of relevant interest
are the research activities on fault tolerant/fail safe systems for
critical environments as space, automotive etc.; on low power
systems considering the circuit and architectural points of view;
and on fuzzy and neural systems for pattern recognition. An
international patent and more than 90 papers on international
journals or presented in international meetings are the results
of his research activity. At present he is the President of a na-
tional consortium named U.L.I.S.S.E., between ten universities,
three polytechnics and several of the biggest national industries,
as STMicroelectronics, ESAOTE, FINMECCANICA. He is re-
sponsible for contracts with the ASI, Italian Space Agency, for
the evaluation and use in space environment of COTS circuits
and for the definition of new suitable architectures for space ap-
plications. Professor Salsano is also involved in professional activ-
ities in the field of information technology and is also consultant
of many public authorities for specific problems. In particular
he is consultant of the Departments of the Research and of the
Industry, of IMI and of other authorities for the evaluation of
industrial public and private research projects. Professor Salsano
was a member of the consulting Committee for Engineering
Sciences of the CNR (National Research Council) from 1981 to
1994.

	Optimized Implementation of RNS FIR Filters Based on FPGAs
	Abstract
	Introduction
	Background on Residue Number System
	Modulo m Operations Based on 6-input LUTs
	Modulo m Adders
	Modulo m Multipliers: Constant Coefficients
	Modulo m Multipliers: Variable Coefficients

	FIR Filter Implementation
	Input Converter
	Modulo mi Filters
	Reverse Converter
	FIR Filters Experiments

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

