
Published in IET Circuits, Devices & Systems
Received on 13th September 2011
Revised on 11th January 2012
doi: 10.1049/iet-cds.2011.0278

ISSN 1751-858X

On the use of Karatsuba formula to detect errors
in GF((2n)2) multipliers
S. Pontarelli A. Salsano
Department of Electronic Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1, Rome 00133, Italy
E-mail: pontarelli@ing.uniroma2.it

Abstract: Galois fields are widely used in cryptographic applications. The detection of an error caused by a fault in a
cryptographic circuit is important to avoid undesirable behaviours of the system that could be used to reveal secret
information. One of the methods used to avoid these behaviours is the concurrent error detection. Multiplication in finite field
is one of the most important operations and is widely used in different cryptographic systems. The authors propose in this
study an error-detection method for composite finite-field multipliers based on the use of Karatsuba formula. The Karatsuba
formula can be used in GF((2n)2) field to decrease the hardware complexity of the finite-field multiplier. The authors propose
a novel finite-field multiplier with concurrent error-detection capabilities based on the Karatsuba formula. How the error-
detection capabilities of this multiplier are able to face a wide range of fault-based attacks is also shown.

1 Introduction

The increasing scaling rate of the microelectronic
technologies observed in the last years pushes for the use of
fault-tolerant techniques, traditionally used in critical
applications such as aerospace and avionics ones, and also
in commercial ones. For example, the effects of the
neutrons at sea levels when subnanometric microelectronics
technologies are used seem to be not negligible. Also, the
use of fault injection attack in cryptography is a reason to
develop high reliable system when the secrecy is important.
These are the main motivations to study the design of fault-
tolerant circuits performing operations in finite fields. In
fact, operations in finite fields are often used in
cryptographic applications and in error detecting and
correcting codes. The detection of a fault is useful to avoid
an undesirable behaviour of the system in both these
applications.

Recently, a number of papers have considered error
detection in finite field arithmetic circuits, for example [1–
10]. Also some methods for error detection in complex
structures like Reed-Solomon encoders and decoders [11],
in elliptic curve cryptography [12] or in the advanced
encryption standard [13] or in the S-box block [14] have
been recently proposed. One of the most important
operations in finite fields is the multiplication. It requires a
considerable amount of silicon area in the implementation
of circuits for cryptographic applications, and therefore it is
one of the blocks of the circuit most susceptible to faults.
Moreover, other complex finite-field arithmetic operations
such as inversion and exponentiation over binary extension
fields can be performed by repeated multiplications. Almost
all the proposed methods for error detection in finite-field
multipliers are based on the use of parity bits [1, 4–10].

One parity check bit can detect any odd number of
erroneous bits in the result of the finite-field multiplier,
while it cannot directly detect an even number of erroneous
bits. It must be noticed that, because of the sharing of the
hardware resources in very large-scale integration (VLSI)
implementation of finite-field multiplier, a single stuck-at
fault affecting a gate of the circuit can produce multiple
erroneous bits. Some extensions that use multiple parity bits
have been proposed in [1, 9], but also in these multipliers
the 100% fault coverage has not been proved. The use of
these parity bits-based methods requires a fine tuning of the
overall design flow. In fact, to guarantee the 100% fault
coverage when one of more parity bits is used, some
additional constraint on the logic optimisation must be
added [14, 15]. These constraints should assure that no
sharing occurs between logic gates belonging to the same
parity group. The logic optimisation with this additional
constraint has been called structure-constrained logic
optimisation in [15]. This limitation is related to the used
fault model (the classic stuck-at-0/1 fault model) that
creates a strong connection between the fault-tolerance
properties of the finite-field multiplier and the implemented
circuit.

Moreover, while standard fault-tolerance techniques use
the well-known single-fault assumption [16], in the case of
fault injection attacks multiple faults can be induced to the
cryptographic circuit [17]. For example, laser-based attacks
[17] can induce multiple event upsets. With the technology
shrinking, this effect will become more and more likely.
The error-detection capabilities of circuits based on the use
of parity bits can be further reduced when the attacker is
able to induce multiple faults to the circuit under attack. In
[17], also fault attacks based on power or clock glitches
have been described. These faults are able to supersede the

IET Circuits Devices Syst., pp. 1–7 1
doi: 10.1049/iet-cds.2011.0278 & The Institution of Engineering and Technology 2012

Techset Composition Ltd, Salisbury

Doc: {IEE}CDs/Articles/Pagination/CDS20110278.3d

www.ietdl.org

error-detection capabilities of many circuits based on the
single-fault assumption. However, this kind of induced fault
occurs in a physically limited silicon area of the circuit, or,
in the case of faults occurring to the clock and power lines,
can be confined by using different power and clock lines
for different areas of the circuit.

In this paper a high-level fault model is used, in order to
develop (and to prove the effectiveness of) an error-
detection method applicable also for this kind of faults. The
achieved error-detection properties for the circuit under
consideration are also less dependent from the
implementation process with respect to the previously cited
solutions.

In particular, since a composite field is used to design the
finite-field multiplier, the error analysis is performed at
level of the elements of the ground field, instead of the bit
level usually used in the methods based on parity bits. This
fault model works at a higher abstraction level with respect
to the bit level of the classic stuck-at model, considering
that any basic component of the finite-field multiplier can
be affected by an error that change the value of the
arithmetic operation that the component performs, by an
unpredictable value. We can refer to a basic component,
and to the corresponding basic arithmetic operation
performed, as any addition or multiplication performed in
the ground field. Therefore any addition or multiplication in
the ground field can be affected by an error of any
magnitude. We remark that this arithmetic-level fault model
is a superset of the classic stuck-at model, since all the
errors caused by a stuck-at fault affects only one basic
component performing an arithmetic operation. Using this
fault model, even if the implementation of the basic
component chances, the error detection properties of the
overall circuit remain unchanged, since the used fault model
covers any fault that can occur in any implementation of
the single basic component.

This fault model also allows to design multipliers that are
robust with respect to attacks based on power and clock
lines. In fact, the proposed method identifies some subset of
theQ1 circuits, (the boxes in Fig. 3) that can be powered by
different power sources and clocked by different clock
distribution lines. If a fault occurs to the power or to the
clock line, it behaves as an arithmetic-level fault, since it
affects only one box of the multiplier, corresponding to the
output of one basic arithmetic operation. Since the other
boxes are not affected by the error caused by the induced
fault, the system is able to detect also this kind of faults.

Our proposed technique is based on the use of Karatsuba
multiplication that allows computing the multiplication in a
composite field starting from smaller multiplications
performed on the ground field. The Karatsuba method to
speed up multiplication has been originally proposed for
integer multiplication in 1962 in the paper [18], and has
been extended to finite-field multiplications in composite
fields in [19, 20] and generalised in [21]. Our method
requires the computation of an additional multiplication in
the ground field and produces two alternative values for the
result of the multiplication. The two alternative results are
equal to the multiplication result if no errors occur and are
different from each other if an error caused by a fault inside
the multiplier occurs. The paper is organised as follows: in
Section 2 the use of the Karatsuba formula for
multiplication in composite Galois field is described, while
in Section 3 the implementation of a concurrent error
detection Karatsuba multiplier is proposed and Section 4
demonstrates that a fault in one of the elements composing

the multiplier can be detected comparing the two alternative
values. Finally, conclusions are drawn in Section 5.

2 Karatsuba multiplication in GF((2n)2)

A GF(2n) Galois field is a finite field of 2n elements and is
constructed using an irreducible polynomial p(x) of degree
n. GF(2n) is defined as the quotient ring obtained by the
reduction modulo p(x) of the ring of polynomials with
coefficient in GF(2)[x], that is, GF(2n) � GF(2)[x]/p(x).
The elements of GF(2n) can be represented as polynomial
of degree less than n with coefficients in GF(2). The
construction of a composite field GF((2n)2) can be obtained
in a similar way. We start from GF(2n)[x], the polynomial
ring with coefficient in GF(2n), choose an irreducible
polynomial p(x) [GF(2n)[x] having the form
p(x) ¼ x2 + x + p0 and construct the field GF((2n)2) as the
quotient ring GF(2n)[x]/p(x). This field is isomorphic to the
field GF(22n). The field GF(2n) over which the composite
field is defined is called the ground field and the elements
of GF((2n)2) can be represented as polynomial of degree
less than 2 with coefficients in GF(2n).

The multiplication of two elements A(x) and B(x) of a
Galois field can be performed multiplying the polynomials
and reducing modulo p(x) the result of the multiplication. If
we have A(x), B(x) [GF((2n)2) and p(x) ¼ x2 + x + p0,
A(x) and B(x) can be represented as A(x) ¼ A1x + A0 and
B(x) ¼ B1x + B0. The result of the multiplication is

C(x) = A(x)B(x)

= A1B1x2 + (A1B0 + A0B1)x + A0B0

= (A1B1 + A1B0 + A0B1)
︸�������������︷︷�������������︸

C1

x + A0B0 + p0A1B1
︸��������︷︷��������︸

C0

= C1x + C0 (1)

The multiplication of two elements of GF((2n)2) therefore
requires four multiplications in the ground field GF(2n), a
constant multiplication for the coefficient p0 and three
additions. The schema of the multiplier in a composite field
is shown in Fig. 1a.

The Karatsuba formula computes the multiplication by
using only three multipliers in the ground field. First, three
intermediate values are computed

L = A0B0

H = A1B1

K = (A1 + A0)(B1 + B0)

For K the following equation holds

K = (A1 + A0)(B1 + B0)

= A1B1 + A1B0 + A0B1
︸������������︷︷������������︸

C1

+ A0B0
︸�︷︷�︸

L

= C1 + L (2)

From the three intermediate values, C1 and C0 can be
computed as

C1 = (K + L)

C0 = A0B0 + p0A1B1 = L + p0H

2 IET Circuits Devices Syst., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cds.2011.0278

www.ietdl.org

The final result C can be computed as

C = A(x)B(x) = (K + L)x + L + p0H (3)

The multiplication performed following (3) requires three
multiplications, a constant multiplication for p0 and four
additions. The schema of the multiplier implementing (3) in
presented in Fig. 1b. The implementation of a multiplier in
a composite field GF((2n)2) as defined in (3) requires fewer
resources than the implementation of a standard multiplier
in the isomorphic field GF(2n).

In fact, a multiplier in a finite field of degree m requires a
number of AND and XOR gates that can be specified as
[19–21]

#AND ≃ m2 (4)

#XOR ≃ m2 (5)

Readers interested to a detailed analysis of space and time
complexity of this multiplier can refer to paragraph 6.1.2
(and specifically to Table 6.1) of the PhD thesis of Paar
[19]. Here, we recall the main results related to this multiplier.

The space complexity of a multiplier realised in a
composite field GF((2n)2) can be estimated as

#AND ≃ 3n2 (6)

#XOR ≃ 3n2 + 4n (7)

In fact, each multiplier requires n2 AND and n2 XOR and
each adder requires n XOR. The constant multiplication can
be realised, with the right choice of p0, with a few XOR gates.

Fig. 1b also shows the critical path (the dash line) of the
Karatsuba multiplier. This path is composed by two adders,
one multiplier and one constant multiplier. The delay of an
adder is simply the delay of a 2 inputs XOR gate, which in
this paper will be indicated as TX. The delay of the constant
multiplier is strictly related to the choice of the p0 value.
For many values of p0 the delay of the constant multiplier
can be estimated as one XOR port, that is, Tp0

= TX .
Finally, the delay of the multiplier in the GF(2n) field is
2⌈log2n⌉TX + TA, where TA is the delay of a two-input

AND gate [19]. The total delay is therefore

T = Tp0
+ (2⌈log2 n⌉+ 1)TX + TA ≃ (2⌈log2 n⌉+ 2)TX + TA

(8)

In order to compare the complexity of the Karatsuba
multiplier with the one of a standard multiplier, we report
the space and delay complexity of a multiplier in the
isomorphic field GF(2n).

The number of required AND and XOR gates is

#AND ≃ 4n2 (9)

#XOR ≃ 4n2 (10)

since the degree of the field is 2n. The use of the Karatsuba
formula therefore allows saving the 25% of gates with
respect to a standard implementation.

The delay of the multiplier is

T = 2⌈log2 2n⌉TX + TA

= 2(⌈log2 n⌉ + log2(2))TX

+ TA = (2⌈log2 n⌉ + 2)TX + TA (11)

and therefore is approximately equal to the delay of the
Karatsuba multiplier.

3 Concurrent error-detection Karatsuba
multiplier

3.1 Architecture of the concurrent error-detection
Karatsuba multiplier

In this section, we show how to detect an error in a GF(2n)
multiplier realised using the Karatsuba formula. First, we
define an additional intermediate result named Ka defined as

Ka = (A0 + aA1)(B0 + aB1)

= A0B0
︸�︷︷�︸

L

+a(A1B0 + A0B1) + a2 × A1B1
︸�︷︷�︸

H

(12)

a [GF(2n) is an element of the ground field. From the

Fig. 1 Schema of the multiplier Q2
a Standard multiplier
b Karatsuba multiplier

IET Circuits Devices Syst., pp. 1–7 3
doi: 10.1049/iet-cds.2011.0278 & The Institution of Engineering and Technology 2012

www.ietdl.org

definition of Ka, we obtain

A1B0 + A0B1 = a−1(Ka + L + a2H) (13)

and therefore C1 can be computed as

C1 = A1B0 + A0B1
︸������︷︷������︸

a−1·(Ka+L+a2H)

+ A1B1
︸�︷︷�︸

H

= a−1(Ka + L + a2H) + H

= a−1(Ka + L) + (a+ 1)H

Now we compute two alternative values of the multiplication
A(x).B(x) as

C′(x) = (K + L)x + L + poH = C′
1x + C′

0 (14)

C′′(x) = (a−1(Ka + L) + (a+ 1)H)x + L + p0H

= C′′
1 x + C′′

0 (15)

The computation of the two alternative values requires four
multiplications in the ground field GF(2n) and five constant
multiplications. If no errors occur the two alternative values
are identical, and C(x) ¼ C′(x) ¼ C′′(x). Instead, if an error
occurs, the two alternative values are different and
comparing C′(x) and C′′(x) we can detect an error inside the
Karatsuba multiplier. To achieve the error-detection
property to the Karatsuba multiplier also the circuit
performing the comparison between C′(x) and C′′(x) should
be designed to be able to detect errors inside itself. A two
rail self-checking comparator [22] can be used to compare
the values of C′(x) and C′′(x) and to assure the detection of
errors both in the Karatsuba multiplier and in the circuit
performing the comparison. Finally, the value of a used in
our method can be any element of the ground field GF(2n),
except the values of 0 and 1, and therefore can be chosen to
reduce the hardware overhead of our proposed method. In
particular, choosing a+ 1 ¼ p0 the resource usage of our
method will require four multiplications in the ground field
GF(2n), four constant multiplications and nine additions.
With this choice the value of p0H can be used both for
computing C′

0 and C′′
0 and for the computation of C′′

1. In
Fig. 2 the structure of the proposed multiplier is presented.

As an example, the multiplier over GF((23)2) is explained
below.

Example 1: The field polynomial of the ground field GF(23) is
Q(y) = y3 + y + 1. The elements of the ground field in the
polynomial and exponential forms are shown in Table 1.

The composite field is generated by the polynomial
p(x) ¼ x2 + x + p0 with p0 ¼ v6. Now we take two elements
of the composite field A(x) ¼ v5x + v2 and B(x) ¼ v3x + v4

and compute the intermediate values L, H, K and Ka.
We obtain L ¼ v6, and H ¼ v8 ¼ v. For K we obtain

K ¼ (v5 + v2)(v3 + v4) ¼ v3v6 ¼ v9 ¼ v2.
For Ka we use a ¼ v6 + 1 ¼ v2 and we obtain Ka ¼

(v2 + v2v5)(v4 + v2v3) ¼ (v2 + v7)(v4 + v5) ¼ (v2 + 1)
(1) ¼ v6.

From the values of L, H, K and Ka we compute C′(x) and
C′′(x) obtaining the following results

C′(x) = (K + L)x + L + p0H

= (v2 + v6)x + v6 + v6v

= (1)x + v6 + v7 = x + v2

while for C′′(x) we obtain

C′′(x) = (a−1(Ka + L) + (a+ 1)H)x + L + p0H

= (v−2(v6 + v6) + v6v)x + v2

= (0 + v7)x + v2

= (0 + 1)x + v2

And the two results are identical as expected.

3.2 Resource estimation

An estimation of the resource of the multiplier shown in
Fig. 2b can be done starting from the (4) and (5) reported
in Section 2. The four multipliers require approximately 4n2

AND and XOR, while the nine adders require 9n XOR
gates. The area of the constant multiplier can be estimated
as n. In fact, the data of Table 6.1 of [19] gives a number
of XOR for p0 that is usually less than n and is equal to n
in the worst cases. The overhead with respect to the basic
implementation without error-detection capabilities is about
the 33%, while the duplication and comparison approach
will require more than 100% of overhead.

In order to evaluate the delay of the multiplier, its critical
path (the dash line) has been depicted in Fig. 2. This path is
composed by three adders, one multiplier and two constant

Fig. 2 Concurrent error detection Karatsuba multiplier

Table 1 Elements of GF(23)

Integer Polynomial Exponential

0 0, 0, 0 0

1 0, 0, 1 v0

2 0, 1, 0 v1

3 0, 1, 1 v3

4 1, 0, 0 v2

5 1, 0, 1 v6

6 1, 1, 0 v4

7 1, 1, 1 v5

4 IET Circuits Devices Syst., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cds.2011.0278

www.ietdl.org

multipliers. The delay of the adders is 3TX, the delay of the
multiplier in the GF(2n) field is 2⌈log2 n⌉TX + TA and the
delay of each constant multiplier can be estimated as TX. In
fact, since the only restriction to the value of a is that it
must be different from 0 and 1, it is easy to choose a value
of a such that the constant multiplications for a and for
a21 require a minimum delay. Therefore the total delay can
be estimated as

T = (5 + 2⌈log2 n⌉)TX + TA

= (5 + 2⌈log2 m/2⌉)TX + TA

= (3 + 2⌈log2 m⌉)TX + TA (16)

Our method allows superseding some of the disadvantages of
the methods based on single and/or multiple parity bits. For
example, in [1] only one parity bit is used and therefore this
method can detect only the presence of an odd number of
erroneous bits. Also with more than one parity bit [9], the
100% fault coverage is not assured. Moreover, the area
overhead of the methods using multiple parity bits is
linearly dependent by the number of parity bits used. With
a limited number of parity bits, the overhead in percentage
is less than the one proposed in this paper. Also in the
other papers like [5, 7, 9] the overhead in percentage is
very low. However, with respect to the total number of
gates, our method achieves similar results compared with
the others. In fact, the number of gates of the concurrent
error-detection Karatsuba-based multiplier is very close to
the number of gates of a direct implementation of a GF(22n)
standard multiplier.

In Table 2 the complexity in terms of number of gates and
the delay of our implementation are reported and compared

with the ones of the multipliers proposed in [7] for fields of
type GF(22m) with m ¼ 2n. The value of h in Table 2 is the
hamming weight of the generator polynomial. Therefore
h ≥ 3, since the generator polynomial is at least a trinomial.

From the data of Table 2, it can be seen that both the area
occupation and the delay of our method is comparable with
the ones of the multipliers based on parity check bits. For the
space complexity, in all the implementation taken into
account the quadratic factor m2 dominates and therefore, the
area occupation of all the implementation is similar when the
value of m increases. For the time complexity, the traditional
bit parallel is the one with the worst performances, since its
complexity is dominated by m, while the low-complexity bit
parallel and the Karatsuba multipliers have the same delays,
since when m increases, the value of ⌈log2(m2 2 m)⌉ tends
to 2⌈log2 m⌉, that is same value of the formula for the
evaluation of the Karatsuba multiplier delay.

4 Error detection in the concurrent error-
detection Karatsuba multiplier

To demonstrate the ability of our method to detect an error
inside the multiplier, we analyse all the cases in which an
error can occur. We suppose that a fault affects one of the
basic arithmetic operations composing the concurrent error-
detection Karatsuba multiplier. From Fig. 2 the basic
arithmetic operations are the four multipliers named Mi, the
four constant multipliers named Ki and the nine adders
named Ai. The erroneous result can affect only one of the
two final alternative values C′(x) and C′′(x) or both the
alternative values with a different magnitude. In particular, it
will be shown that an error affecting the value of L
compromises both the values of C′

1 and C′′
1, but the circuit is

still able to detect an error in L comparing those values, since
the error in C′

1 and C′′
1 differs by a multiplicative factor a21.

We examine what happen when an error occurs dividing the
analysis in five different cases. The first four cases correspond
to an error in one of the intermediate values H, K, L, Ka,
while the last case analyses an error affecting one output. The
analysis shows that it is always possible to detect a fault in
each of the basic arithmetic operations composing the
multiplier. The analysis of the final self-checking comparator
is omitted, since its behaviour is well known [22]. Fig. 3
shows the division of the circuit in the five different cases. In
order to prevent fault attacks based on power glitches, each
box in which the circuit in Fig. 3 should be powered by a
different power source. In the same way, if a pipelined
multiplier is used, a different clock distribution for each box
allows preventing fault attacks based on the clock source.

Case 1: Error in p0H. This computation is performed by the
multiplier M1 and the constant multiplier K3. A fault in one
of these elements affects the outputs C′

0, C′′
1 and C′′

0. The
error can be detected since the values of C′

1 and C′′
1 are

different. In fact, C′
1 is error-free while C′′

1 is erroneous.
Case 2: Error in computation of K. K is computed using the
adders A1, A2 and the multiplier M2. This value is used

Fig. 3 Five cases of the error analysis for the concurrent error
detection Karatsuba multiplier

Table 2 Complexities and delay of finite-field multiplier with fault-detection capability

Traditional bit parallel [7] Low-complexity bit parallel [7] Karatsuba

#AND m2 + m m2 + 1 m2

#XOR m2 + (h + 1) × m 2 h m2 + h × (m 2 h + 2) m2 + 5m

delay TA + (m + ⌈log2(m + 1)⌉)TX TA + (2h − 3 + ⌈log2(m2 − m)⌉)TX TA + (3 + 2⌈log2m⌉)TX i

IET Circuits Devices Syst., pp. 1–7 5
doi: 10.1049/iet-cds.2011.0278 & The Institution of Engineering and Technology 2012

www.ietdl.org

only to compute C′
1 and therefore an error affects only the

result of the C′(x) computation, while the correct value of
C(x) is C′′(x). The comparison between C′(x) and C′′(x)
allow the detection of the error.
Case 3: Error in L. This computation is performed by M3. All
the four outputs of the circuit can be affected by the error.
However, now we will show how the magnitude of the
error differs between C′

1 and C′′
1 allowing the detection on

the error comparing the two alternative values.
Let us define the error on L as �L = L + e, where e is an

element of the ground field different from zero, L is the
correct value of the computation and �L is the value affected
by an error resulting from the wrong computation of A0B0.
The value of C′

1 is

C′
1 = K + �L = K + L + e = C1 + e (17)

whereas the value of C′′
1 is

C′′
1 = a−1(Ka + �L) + (a+ 1)H

= a−1e + a−1(Ka + L) + (a+ 1)H

= a−1e + C1 (18)

It can be noticed that imposing a21
= 1 then C′

1 = C′′
1

therefore the error can be detected comparing these values.
Case 4: Error in computation of Ka. Ka is computed using the
constant multipliers K1 and K2, the adders A3 and A4 and the
multiplier M4. Ka is used only to compute C′′

1 and therefore
an error affects only the result of the C′′(x) computation,
while the correct value of C(x) is C(x) ¼ C′(x). The
comparison between C′(x) and C′′(x) allows the detection of
the error.
Case 5: Error in computation of C′

0, C′
1, C′′

1 and C′′. An error
in one of the outputs is due to a fault in the constant multiplier
K4 or in one of the adders A5, A6 and A7, A8, A9. Here, an
error affects only to one output, therefore can be detected
comparing the erroneous output with the corresponding
unaffected one.

To better describe the behaviour of the concurrent error-
detection multiplier, two examples are reported below. Since
the cases from 1 to 4 are simple to understand because the
error affects only one of the components of C′(x) and C′′(x),
we provide these examples for explaining cases 1 and 3.

Example 2: Also in this example we use the same data of
Example 1 and we suppose an error in H changing its value
from v to 0. We compute C′(x) and C′′(x) obtaining the
following results

C′(x) = (K + L)x + L + p0H

= (v2 + v6)x + v6 + v6 × 0

= (1)
︸︷︷︸

C′
1

×x + v6
︸︷︷︸

C′
0

C′′(x) = (a−1(Ka + L) + (a+ 1)H)x + L + p0H

= (v−2(v6 + v6) + v6 × 0)x + v6

= (0 + 0)
︸��︷︷��︸

C′′
1

x + v6
︸︷︷︸

C′′
0

Here, we obtain that C′′
0 ¼ C′

0 = C0 and C′′
1 = C′

1. The
comparison between C′′

1 and C′
1 allows detecting the error.

Example 3: Using the same composite field GF((23)2) and the

same values for A(x) and B(x) of Example 1, we suppose an

error in L changing its value from v6 to v5. The error is
e ¼ v.

Now we compute C′(x) and C′′(x) obtaining the following
results

C′(x) = (K + L)x + L + p0H

= (v2 + v5)x + v5 + v6v = v3x + v5 + v7

= v3
︸︷︷︸

C′
1

×x + v4
︸︷︷︸

C′
0

C′′(x) = (a−1(Ka + L) + (a+ 1)H)x + L + p0H

= (v−2(v6 + v5) + v6v)x + v5 + v7

= (v−2v+ 1)x + v4

= (v6 + 1)x + v4 v2
︸︷︷︸

C′′
1

×x + v4
︸︷︷︸

C′′
0

The results of C′′
1 and C′

1 are different from each other and are
different from the right result C1 ¼ 1. In particular C′

1 and C′′
1

assume the values of C′
1 ¼ 1 + v ¼ v3 and C′′

1 ¼ 1 +
v5.v ¼ v2 as defined by (14) and (15).

5 Conclusions

In this paper, a technique for designing online fault-detection
multiplier for composite finite fields has been proposed. The
method uses an additional multiplication in the ground field
and computes two alternative values of the multiplication
result. The computation of the two values is performed
by using the Karatsuba formula for composite finite field.
The method assures that any error in the multiplier affects
the two alternative values in a different way, allowing the
detection of an error simply comparing the two results. The
method requires only a small overhead and can detect any
faults causing an error on one of the basic components
composing the finite-field multiplier. Since this multiplier is
also able to detect fault affecting multiple bits, or affecting
clock and power lines, it is particularly suitable to protect
cryptographic applications against fault-based side channel
attacks.

6 References

1 Bayat-Sarmadi, S., Hasan, M.A.: ‘Concurrent error detection of
polynomial basis multiplication over extension fields using a
multiple-bit parity scheme’. Proc. 20th IEEE Int. Symp. on Defect
and Fault Tolerance in VLSI Systems, DFT’05, October 2005,
pp. 102–110

2 Chiou, C.W., Lee, C.Y., Deng, A., Lin, J.: ‘Concurrent error
detection in Montgomery multiplication over GF(2n)’, IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., 2006, 89-A, (2),
pp. 566–574

3 Gaubatz, G., Sunar, B.: ‘Robust finite field arithmetic for fault-tolerant
public-key cryptography’. Proc. Third Int. Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC’06, 2006,
pp. 196–210

4 Fenn, S., Gossel, M., Benaissa, M., Taylor, D.: ‘On-line error detection
for bit-serial multipliers in GF(2m)’, J. Electron. Test., 1998, 13, (1),
pp. 29–40

6 IET Circuits Devices Syst., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cds.2011.0278

www.ietdl.org

5 Lee, C.Y., Chiou, C.W., Lin, J.: ‘Concurrent error detection in a
polynomial basis multiplier over GF(2n)’, J. Electron. Test., 2006, 22,
(2), pp. 143–150

6 Lee, C.Y., Chiou, C.W., Lin, J.: ‘Concurrent error detection in a bit-
parallel systolic multiplier for dual basis of GF(2n)’, J. Electron. Test.,
2005, 21, (5), pp. 539–549

7 Reyhani-Masoleh, A., Anwar Hasan, M.: ‘Fault detection architectures
for field multiplication using polynomial bases’, IEEE Trans.
Comput., 2006, 55, (9), pp. 1089–1103

8 Hariri, A., Reyhani-Masoleh, A.: ‘Fault detection structures for the
Montgomery multiplication over binary extension fields’. Proc. Fourth
Int. Workshop on Fault Diagnosis and Tolerance in Cryptography,
2007, FDTC’07, Vienna, Austria, 10 September 2007, pp. 37–46

9 Bayat-Sarmadi, S., Hasan, M.A.: ‘On concurrent detection of errors in
polynomial basis multiplication’, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 2007, 15, (4), pp. 413–426

10 Chelton, W., Benaissa, M.: ‘Concurrent error detection in GF(2m)
multiplication and its application in elliptic curve cryptography’, IET
Circuits Devices Syst., 2008, 2, (3), pp. 289–297

11 Cardarilli, G.C., Pontarelli, S., Re, M., Salsano, A.: ‘Concurrent error
detection in Reed-Solomon encoders and decoders’, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 2007, 15, (7), pp. 842–846

12 Mozaffari Kermani, M., Reyhani-Masoleh, A.: ‘A structure-independent
approach for fault detection hardware implementations of the advanced
encryption standard’. Fourth Int. Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2007, FDTC 2007, Vienna, Austria, 10
September 2007

13 Mozaffari Kermani, M., Reyhani-Masoleh, A.: ‘Parity prediction of
s-box for AES’. Proc. Canadian Conf. on Electrical and Computer
Engineering, CCECE 2006, 2006, pp. 2357–2360

14 Bolchini, C., Salice, F., Sciuto, D.: ‘A novel methodology for designing
TSC networks based on the parity bit code’. European Design and Test
Conf., ED&TC 97, 17–20 March 1997, pp. 440–444

15 Touba, N.A., McCluskey, E.J.: ‘Logic synthesis techniques for reduced
area implementation of multilevel circuits with concurrent error
detection’. Proc. 1994 IEEE/ACM Int. Conf. on Computer-Aided
Design, 1994, pp. 651–654

16 Wang, L.T., Wu, C.W., Wen, X.: ‘VLSI test principles and architectures:
design for testability’ (Morgan Kaufmann, 2006)

17 Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: ‘The
sorcerers apprentice guide to fault attacks’, IACR Cryptology ePrint
Archive. Available at: http://eprint.iacr.org/2004/, 2004

18 Karatsuba, A., Ofman, Y.: ‘Multiplication of many-digital numbers by
automatic computers’, Doklady Akad. Nauk SSSR, 1962, 145,
pp. 293–294

19 Paar, C.: ‘Efficient VLSI architectures for bit-parallel computation in
Galois fields’. PhD thesis, (English translation), Institute for
Experimental Mathematics, University of Essen, Essen, Germany,
June 1994

20 Paar, C.: ‘A new architecture for a parallel finite field multiplier with low
complexity based on composite fields’, IEEE Trans. Comput., 1996, 45,
(7), pp. 856–861

21 Sunar, B.: ‘A generalized method for constructing subquadratic
complexity GF(2k) multipliers’, IEEE Trans. Comput., 2004, 53, (9),
pp. 1097–1105

22 Lala, P.K.: ‘Self-checking and fault-tolerant digital design’ (Morgan
Kaufmann, San Francisco, 2001)

23 Afanasyev, V.B.: ‘On the complexity of finite field arithmetic’. Proc.
Fifth Joint Soviet-Swedish Int. Workshop on Information Theory,
Moscow, USSR, January 1991, pp. 9–12 Q3

IET Circuits Devices Syst., pp. 1–7 7
doi: 10.1049/iet-cds.2011.0278 & The Institution of Engineering and Technology 2012

www.ietdl.org

http://eprint.iacr.org/2004/, 2004

CDS20110278
Author Queries

S. Pontarelli, A. Salsano

Q1 Please check the initial citation of Fig. 3.

Q2 Please check the inserted main caption for Fig 1.

Q3 Reference [23] is uncited. Please cite or delete from the list.

www.ietdl.org

	1 Introduction
	2 Karatsuba multiplication in GF((2n)2)
	3 Concurrent error-detection Karatsuba multiplier
	4 Error detection in the concurrent error-detection Karatsuba multiplier
	5 Conclusions
	6 References

