
Implementation of the AES Algorithm Using a
Reconfigurable Functional Unit

G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, S. Pontarelli, M. Re , A. Salsano
University of Rome ”Tor Vergata”

Via del Politecnico 1, 00133, Rome, ITALY
Email: {cardarilli, di.nunzio, fazzolari, pontarelli, re, salsano}@ing.uniroma2.it

Abstract—Nowadays programmable devices (microprocessors
and DSPs) are based on complex architectures optimized for
obtaining maximum speed performances that degrades when
the implemented application is mostly based on operations on
single bit or subset of bits. This kind of data processing and
bit manipulation operations can be accelerated by using a
Reconfigurable Functional Unit (RFU). In this paper the benefits
of using the ADAPTO RFU (Adder-Based Dynamic Architecture
for Processing Tailored Operators) [1] [2] to speed up the
Advanced Encryption Standard algorithm (AES) is investigated.
The paper shows how the ADAPTO architecture is useful for the
acceleration the AES algorithm due the efficient implementation
of the most complex operations of the algorithm. A comparison
in terms of number of assembly instructions is given.

I. INTRODUCTION

The spreading diffusion of digital techniques for data and
signal processing is pushing toward microprocessor and DSP
architectures of increasing efficiency.

An important limitation for such new structures is their
efficiency in computing operations based on a reduced data
parallelism. Examples of these operations are bit permutations,
where input bits are rearranged individually or on the basis
of short subwords [4], and polynomial multiplication in Ga-
lois Field (GF), where only some input bits are multiplied
(XORed) by the polynomial coefficients [10].

Of course, these nonstandard operations can be performed
by conventional processors, but their implementation requires
several standard instructions. Despite its large use, this ap-
proach is not efficient and reduces the processor speed perfor-
mance.

Several solutions have been proposed in the literature to
overcome this drawback, either in software [4] or hardware.
Among the hardware solutions the most interesting ones, in
terms of flexibility and performance, are based on Reconfig-
urable Functional Units (RFUs). Proposed RFUs are similar
to small FPGAs (array of LUTs and pass-transistors for the
programmable interconnect) and are connected in parallel to
the ALU, sharing the Register File (RF) and working as an
hardware Instruction Set (IS) expansion [6].

RFUs are very different from conventional coprocessors in
expanding the core instruction set, but coprocessors are not
integrated in the datapath unit requiring the use of the system
bus to exchange data.

In this scenario, great efforts are devoted to develop efficient
processors for embedded systems applications. In this case,

apart from evaluations based on computational performance,
very critical constraints are represented by power consumption
and cost factors that are strongly related to the complexity of
the architecture and consequently to the silicon area.

To face these constraints in [1], [2] the authors proposed a
new architecture named ADAPTO in the which LUTs [5] used
for the implementation of general purpose logic have been re-
placed by Full-Adders (FAs). The resulting architecture is less
expensive with respect to those proposed in the literature, but
this favorable characteristic is counterbalanced by a reduced
flexibility.

In order to evaluate the trade-off between complexity and
flexibility, the authors defined a set of experiments based
on typical embedded systems applications. Those applications
have been executed by using ADAPTO and a general purpose
microprocessor (by using an architecture emulator) in order to
verify the speed-up factor [3].

In this paper we shows that ADAPTO can also be used to
accelerate the Rijndael AES algorithm [10], that is based on
operations on GF (2n).

The paper is organized as follows. In Section II ADAPTO
is briefly described, while Section III illustrates the the AES
algorithm. In section IV the ADAPTO implementation of the
AES algorithm is presented with the evaluation of the obtained
speed-up. Finally, in Section V the conclusions are drawn.

II. THE ADAPTO ARCHITECTURE

The ADAPTO RFU architecture is based on three alternated
stripes of Logic Blocks (LBs) and interconnect with a paral-
lelism of 32 bits (both for inputs and outputs). The architecture
has been conceived to be connected to the main processor
Register File (RF). LBs are based on FAs that perform both
logical and arithmetical operations meanwhile the interconnect
is based on pass transistors (as shown in Fig. 1). Multicontext
is implemented by context memories (LBs and interconnect
programming).

FAs can be configured to execute one bit addition, NOT and
PASS, 2 input AND, 2 input OR, 2 and 3 input XOR, and 3
Majority.

The structure of the interconnect is shown in Fig. 2, and is
based on a multicontext approach (for an high reconfiguration
speed). Each LB output can be linked with any inputs of the
LBs of the bottom row. In addition to the 32 inputs coming
from the upper LBs, two additional lines directly connected 0

978-1-61284-943-0



Fig. 1. ADAPTO Reconfigurable Array Architecture

and 1 have been added to the interconnect in order to easily
implement shift operations with 1 or 0 insertion and operations
on constant values. Multicontext configuration bits are stored
in local memories. Carry chain uses a direct connection
(linking adjacent LBs) to speed-up the carry propagation in
multibit adders. A more detailed description of the ADAPTO
architecture can be found in [1] and [5].

Fig. 2. Reconfigurable Interconnect Network.

III. THE AES ALGORITHM

In the AES algorithm (that is based on byte operations) the
encryption of a data block is composed by: a XOR step, several
round transformations (in the following simply rounds), and
an final round (different by the previous ones). In the case of
128 bits blocks, the data are arranged as 16 bytes (the state)
and are organized in a matrix as follows

I =


A E I M
B F J N
C G K O
D H L P

 (1)

The encryption of a 128 bits block requires 9 rounds, each
one composed by four processing steps

1) SubBytes: a non-linear substitution step where each byte
is replaced by addressing a Look Up Table (LUT).

2) ShiftRows: a transposition step where each row of the
state is cyclically shifted a for a number of steps.

3) MixColumns: a mixing operation operating on the
columns of the state, combining the four bytes in each
column

4) AddRoundKey: each byte of the state is combined with
the round key.

In the final round, the Mixcolumn transformation is not
performed. For the decryption, the inverse transformations
InvSubBytes, InvShiftRowsInvMixColumns and a slogtly dof-
ferent AddRoundKey are used.

In a software implementation of the AES encryp-
tion/decryption, SubBytes and InvSubBytes operations are
efficiently implemented by using 256 bytes LUTs, while
ShiftRows and InvShiftRows are byte reorderings and cor-
respond to a simple software implementation. Moreover,
ShiftRows and InvShiftRows can be merged with SubBytes and
InvSubBytes and therefore their impact on the performance
of the AES algorithm is negligible. Also AddRoundKey a two
inputs 32-bit XOR operation can be efficiently implemented
in standard software.

The operations that can take advantage by using an RFU
are MixColumns/InvMixColumns due to their implementation
complexity that on a ARM926EJ-S RISC requires about 50
assembly instructions. The MixColumn transformation is a
based on matrix multiplication in GF (28) where each column
of I is multiplied by each row of

M =


0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 (2)

obtaining 16 results. Each element of the matrix (hexadeci-
mal notation) represents a polynomial of degree 7 with coeffi-
cients corresponding to the its binary representation (e.g. 0x0A
=0b00001010 = x3 + x). We remark that constant multiplica-
tions are performed on GF (28) by using x8 +x4 +x3 +x+1
as generator polynomial.

For the InvMixcolumn transformation each column of I is
multiplied by each column of the inverse of M

M−1 =


0x0E 0x0B 0x0D 0x09
0x09 0x0E 0x0B 0x0D
0x0D 0x09 0x0E 0x0B
0x0B 0x0D 0x09 0x0E

 (3)

Multiplications involved in InvMixcolumn are more com-
plex than multiplications involved in Mixcolumn and repre-
sents the more expensive task in the AES algorithm. In the
next section we show how these operations are implemented
by using ADAPTO.

IV. ADAPTO IMPLEMENTATION

A. Data allocation strategy

The allocation of data has been performed considering the
RF of a 32 bit microprocessor. The implementation of Mix-
column and InvMixcolumn operations in ADAPTO requires to



choose an appropriate organization to store the 16 bytes of
I in the RF [1]. In our approach, I has been memorized by
column (Table I). In this way ADAPTO can load an entire
column at each clock cycle.

Stored bytes
Register/part [31..24] [23..16] [15..8] [7..0]

R1 A B C D
R2 E F G H
R3 I J K L
R4 M N O P

TABLE I
RF ALLOCATION OF AES MATRIX

B. GF (28) constant multiplication in ADAPTO

In this subsection, GF (28) constant multiplication is il-
lustrated (GF multiplication corresponds to a conventional
polynomial multiplication followed by a division by the poly-
nomial generator). In order to illustrate the use of ADAPTO,
we consider the following example. Take into account the
multiplication of a generic 8-bit polynomial P = p7 · x7 +
p6 · x6 + p5 · x5 + p4 · x4 + p3 · x3 + p2 · x2 + p1 · x1 + p0

by the constant polynomial (x + 1), corresponding to the
hexadecimal number 0x03. The operation 0x03 ·P in the GF
gives 0x03·P = (p7 ·x7 + p6 ·x6 + p5 ·x5 + p4 ·x4 + p3 ·x3 +
p2 · x2 + p1 · x+ p0) + (p6 · x7 + p5 · x6 + p4 · x5 + p3 · x4 +
p2 · x3 + p1 · x2 + p0 · x) + p7 · (x4 + x3 + x+ 1). Shortly we
can write

0x03 ·P = P + (P << 1) + p7 · (x4 + x3 + x+ 1)
Figure 3 shows the ADAPTO implementation of the constant
multiplication by 0x03. The shift operations, as the left shift
A << 1 required in the above multiplication, are performed
directly by the ADAPTO interconnection network. Also a7 ·
(x4 + x3 + x+ 1) can be implemented by the interconnection
network. In fact, let us call Z=z7z6z5z4z3z2z1z0 the byte
representing the result of a7 · (x4 + x3 + x + 1). We have
z7 = z6 = z5 = z2 = 0 and z4 = z3 = z1 = z0 = a7.
Therefore the interconnect can compute Z by imposing some
LB inputs to zero and connecting a7 to the remaining LBs.
The stripe following the interconnection is configured as a
three input XOR, performing the required three additions on
GF (28).

Fig. 3. Implementation of 0x03·B in ADAPTO

Any constant multiplications that can be translated in a bit
rearrangement and a sum of three terms can be performed with
the above method. In our work any constant multiplication is
computed using the set of basic multiplications shown in the
Table II.

C Implementation C ∗ ·P
0x02 (P << 1) + p7 · (x4 + x3 + x + 1).
0x03 P + (P << 1) + p7 · (x4 + x3 + x + 1)
0x04 (P << 2) + p7 · (x5 + x4 + x2 + x)+

+p6 · (x4 + x3 + x + 1)

TABLE II
BASIC CONSTANT MULTIPLICATIONS

C. ADAPTO implementation of Mixcolumn
Using the above results, in this subsection we describe the

implementation on ADAPTO of the multiplication of a row of
M by a column of I. We suppose that each column of I is
stored in the RF, according to above discussed data allocation
strategy. D1, D2, D3 are the ADAPTO input operands coming
from the RF, and R is the final result that will be returned to
the RF. Moreover α, β, and γ are the partial results present
at the output of the three LB stripes of ADAPTO.
As an example, we consider the multiplication of the first row
of M by the first column of I .
Algorithm 1 describes the implementation of this multipli-
cation. The first stripe of ADAPTO is configured as a pass-
thru and connects directly A, B, C, D (output α) to the first
level of interconnect . The constant multiplications 0x02 ·A,
and 0x03 · B, with the sum C + D are computed by the
interconnect and the second LB stripe (output β). It must be
noticed that this mixed operations require 24 LBs configured
as three inputs XOR, while the eight rightmost LBs are unused.
In the algorithm we represent these unused output as don’t
care ’-’. Starting β, the last LB stripe, configured as three
input XOR, provides the final mod. 8 sum γ.

Algorithm 1 Multiplication 1st row of M by the 1st data
column
Input: D1(A,B, C, D); D2=(-.-.-.-); D3=(-.-.-.-)
Output: R[7 : 0] = 0x02 ·A+ 0x03 ·B + C +D.
α← (A, B, C, D)
β ← (0x02 ·A, 0x03 ·B, C +D,−)
γ ← (−, −, −, 0x02 ·A+ 0x03 ·B + C +D)
return R[7 : 0]← γ[7 : 0]

The product of the same column by a different row requires
the reconfiguration of ADAPTO. Therefore the entire Mix-
Column operation requires four different ADAPTO contexts
(of the 16 available in the current architecture). However, the
computation of the product of different columns by the same
row is computed by using the same context.

By using Algorithm 1 each row by column multiplication
requires 1 ADAPTO instruction. Consequently the whole
MixColumn operation is computed in 16 assembly instructions
(corresponding to 16 clock cycles, since one clock cycle is
required for each ADAPTO context [1], [2]). This imple-
mentation has been compared with a Mixcolumns software
implementation present in the benchmark suite described in

978-1-61284-943-0



[11]. This function, compiled on a ARM926EJ-S RISC,
architecture requires about 200 assembly instructions. Thus
the speed-up obtained with ADAPTO is about 12.5x

D. ADAPTO implementation of InvMixcolumn
The InvMixColumn operation I ×M−1 is more complex

due to the structure of the entries of the matrix M−1 (here I
is different from that used in Mixcolumn). To simplify the
computation, the constant coefficient of multiplications are
expressed in terms of the elementary constants of Table II.
Table III is shows the decomposition of the multiplications by
complex constants.

C Decomposition of C · P
0x08 0x02 · (0x04 · P )
0x09 0x08 · P + 0x01 · P
0x0B 0x08 · P + 0x03 · P
0x0C 0x03 · (0x04 · P )
0x0D 0x0C · P + 0x01 · P
0x0E 0x0C · P + 0x02 · P

TABLE III
DECOMPOSITION OF COMPLEX CONSTANTS

The decomposition of Table III can require more contexts
for the computation of a constant multiplication. For example,
the multiplication by 0x0E is performed in two phases (cor-
responding to 2 ADAPTO contexts). For the multiplication of
first row of M−1 by the first column of data matrix I we
decompose the computation it in two terms

R = 0x0E ·A+ 0x0B ·B + 0x0D · C + 0x09 ·D =
= (0x0C ·A+ 0x08 ·B + 0x0C · C + 0x08 ·D)+

(0x02 ·A+ 0x03 ·B + 0x01 · C + 0x01 ·D)
The result R is evaluated in two phases. In the first phase,

the first partial results are computed by ADAPTO as constant
multiplications of A, B, C, D by 0x04, (corresponding to
α) followed by four multiplications by 0x03 or 0x02 (γ
computation). These operations are implemented in the first
ADAPTO context. In the second phase the input D1 contains
A, B, C, D, and the inputs D2 and D3 store the results of the
previous phase. We use the ADAPTO inputs D1 and D2 to
compute 0x0C ·C +C and 0x08 ·D+D. Instead D3 is used
to input the previous results to the input of the second stripe
of LB. So we compute the three terms 0x0C · A + 0x02 · A
0x03 ·B and 0x08 ·B+0x0D ·C+0x09 ·D. The third strip of
the ADAPTO sums (XOR) these three terms. The two phases
are shown in Algorithm 2.

The two constants of Algorithm 2 are valid until the row of
M−1 is unchanged. When we go to another row the constants
change and two other contexts must be used. Consequently, the
computation of the whole InvMixColumn in principle requires
8 contexts. Some simplification can be carried out observing
the properties of the entries of M−1. For example, PHASE 1
can be shared between the first and third rows, and between
the second and the fourth rows. In fact the first and the third
rows have the common term (0x0C ·A+ 0x08 ·B + 0x0C ·
C + 0x08 · D), while the second and the fourth rows have
(0x08·A+0x0C ·B+0x08·C+0x0C ·D). This property allows
to reduce the number of contexts and number of time the
contexts must be reconfigured Therefore the computation of

Algorithm 2 multiplication of a row of the matrix M−1 by a
column
Input: D1(A,B, C, D); D2=(-,-,-,-); D3=(-,-,-,-)
Output: R[7 : 0] = 0x0E ·A+ 0x0B ·B + 0x0D ·C + 0x09 ·D.

PHASE 1 (context 1)
α← (A, B, C, D)
β ← (0x04 ·A, 0x04 ·B, 0x04 · C, 0x04 ·D)
γ ← (0x0C ·A, 0x08 ·B, 0x0C · C, 0x08 ·D)
PHASE 2 (context 2)
D1← (A, B, C, D); D2← γ; D3← γ;
α← (A, B, 0x0D · C, 0x09 ·D)
β ← (0x0E ·A, 0x03 ·B, 0x08 ·B + 0x0D ·C + 0x09 ·D,−)
γ ← (−,−,−, 0x0E ·A+ 0x0B ·B + 0x0D · C + 0x09 ·D)

the complete output matrix requires 16 runs of PHASE 2 and
8 runs PHASE 1, for a total of 24 ADAPTO reconfigurations
corresponding to 24 assembly instructions. On the other hand,
the software implementation of InvMixColumn requires again
200 instructions. So, a speed-up of about 8.3x is obtained.

V. CONCLUSIONS
This paper describes how ADAPTO can be used in a low

cost microprocessors or DSP architecture to accelerate the
execution of the AES algorithm. The combined use of slices
of FAs instead of LUTs and a suitable structure for the inter-
connect allows realizing a flexible architecture using a limited
silicon area with respect to other solutions presented in the
literature. The use of ADAPTO allows an high speed execution
of the most time consuming operations of the AES algorithm.
In particular, we show that MixColumns and InvMixColumns
can be performed by ADAPTO in 16 and 24 clock cycles
respectively, exploiting the 32-bits parallelism for processing
multiple bytes in parallel, obtaining a speed-up in the range
8.3-12.5x with respect to the software implementation on an
ARM926EJ-S RISC architecture.

REFERENCES

[1] G. C. Cardarilli, L. Di Nunzio, M. Re, ”High Performance Reconfigurable
blocks for real-time reconfigurable unit (ADAPTO)”, Proc. ReCoSoc 2008,
Barcelona, July 9-11, 2008

[2] G. C. Cardarilli, L. Di Nunzio, M. Re, ”A full-adder based reconfigurable
architecture for fine grain applications: ADAPTO”, Proc. IEEE Int. Conf.
ICECS 2008, Malta, 31August- 3 September 2008

[3] G. C. Cardarilli, L. Di Nunzio, M. Re ”Speed-up of RISC processor
computation using ADAPTO” ,Proc. IEEE Int. Symp. on Circuits and
Systems, ISCAS 2009, Taipei, Taiwan, 24-27 May 2009

[4] Bengu Li, Rajiv Gupta, ”Bit Section Instruction Set Extension of ARM
for Embedded Applications”, Proc. Int. Conf. CASES 2002, Greenoble,
France, October 8-11, 2002

[5] G. C. Cardarilli, L. Di Nunzio, M. Re, ”Arithmetic/Logic Blocks for Fine-
Grained Reconfigurable Units”, Proc. IEEE Int. Symposium on Circuits
and Systems, ISCAS 2009, Taipei, Taiwan, 24-27 May 2009

[6] M. D. Razdan, R. Smith, ”A high-performance microarchitecture with
hardware programmable functional units”, Proc. of MICRO-27, Nov. 1994

[7] A.J. Menezes, and P.C. Van Oorschot, S.A.Vanstone, ”Handbook of
applied cryptography”, 1997, CRC press

[8] W.Peterson, and E.Weldon, ”Error-correcting codes”, 1972, MIT Press
[9] E.Di Claudio, F.Piazza, G.Orlandi, ”Fast combinatorial RNS processors

for DSP applications”, IEEE Trans. on Computers, vol. 44, no. 5, 1995
[10] J.n Daemen and V. Rijmen, ”The Design of Rijndael: AES - The

Advanced Encryption Standard.” Springer-Verlag, 2002.
[11] M.. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.

Brown ”MiBench: A free, commercially representative embedded bench-
mark suite”, Proc. 4th Ann. IEEE Intl Work. Workload Characterization,
2001


