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Abstract- This paper proposes a methodology for the develop- to obtain the requested reliability levels. These considerations
ment of fault tolerant arithmetic circuits using an r-radix Signed are general, but in particular are valid for DSP applications,
Digit (SD) representation. A residue checking based technique where often the requirements in term of speed and density
is applied to detect errors caused by faults belonging to the
considered stuck-at fault set. We developed a technique to detect are very hilgh, and the mandatory use of technologies with
the presence of a fault in the adder by using a completely the best available feature size implies the increase of the
independent circuit that uses check symbols that are residues of probability of fault occurrence. The basic building blocks of all
the numbers modulo a suitable base. We show that for any radix DSP applications are adders and multipliers. Many works have
r > 3 the correctness of the adder operation can be checked been published on the detection of faults in these structures.
simply by using two check symbols. This property is used to
extend the fault detection also to SD constant multipliers and to In particular self-checking adders based on residue codes [5],
the rounding operation. The extension to SD constant multiplier [6], parity codes [7], or Berger codes [8] have been proposed.
can be easily obtained by implementing the multipliers using a From the performance standpoint the implementation of an
shift and add architecture. For the truncation operation we notice adder in Signed Digit representation such as in [9], allows
that many error detection techniques based on some arithmetic obtaining fast arithmetic circuits due to the its carry-free
properties of the circuits fails when the truncation operation is obtaIn fas aretic circtue totherisocary-re
performed. Instead, we show how our method can be applied to property In the previous literature [10], [11] other soluthons
this operation with low area overhead and therefore it is useful based on radix-2 signed digit self checking adders have been
to implement self-checking Finite Impulse Response (FIR) filters. proposed. In particular, in [9] an inherent parity coding scheme

is proposed to code the digits while in [10] a 1 out of 3
scheme is investigated. For complex structures such as FIR
filter techniques based on the Residue Number System (RNS)

I . INTRODUCTION have been proposed [12],[13]. We notice that those methods
The silicon integrated circuits trend is characterized by a presents serious drawbacks related to the scaling operations

steady reduction in the feature size combined with a steady because the self-checking property is not guaranteed. The
rise in density and speed [1]. A lot of new problems related solution proposed in this paper is based on r-radix signed
to this incredible increase of complexity must be faced both digit representation and the correctness of the adder operation
from the technological and architectural point of view. In is obtained by using two check symbols that form a residue
this scenario, both permanent and transient fault probability of the input operands. The fault detection is extended to SD
increases limiting the silicon foundry yield and the reliability constant multipliers and to the truncation operation. These
and availability of the implemented circuits [1], [2]. The extensions allows to apply this method to the design of self-
success of the emerging technologies depends on an early checking FIR filters. The paper is organized as follows: in
identification and analysis of these problems together with the section II a background of SD arithmetic is given, while in
development of suitable design methodologies and techniques Section III the error detection method is presented for the
both in terms of cost and complexity. This can be obtained adder operation. Section IV extends this method to the SD
by approaching the problem at different abstraction levels and constant multiplier. In Section V, the method is used for the
from different point of views: technological, architectural and truncation operation and in Section VI the implementation of
design methodology. While the silicon foundries will face the whole self-checking FIR filter is shown. The Conclusions
the technological problems in order to optimize costs and are drawn in Section VII.
productivity, from the point of view of the design of electronic
systems, the final targets in terms of availability and reliability .SGEDITREEENAONBC RUD
can be obtained by avoiding faults (fault avoidance), or by
using fault tolerance techniques [3], [4]. The first step in fault The general theory of the SD representation is reported in
tolerant circuits is the detection of the occurrence of a fault. [9], [14]. In this section a brief illustration of its basic theory
After the detection of a fault different strategies like fault is shown. In a radix r SD representation a number x can be
masking or reconfiguration and repair [3], [4] can be used represented as
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Fig. 1. a) Signed Digit Adder b) Signed Digit Adder modulo r2 - 1

n-1

x =Zxiri (1) e ie e r +e ri±l (wi - wi)ri+ (ci ci)ri+± (5)

with lew = wi -wi < 2(a -1) and ec = ci -ci < 2.
Where the digit set is xi e {-a, ...., 1, 0, 1, ... , a}, with Therefore for ei we obtain: ei < 2r + 2a - 2. A fault in the

F2 1 <a<r-1. ADD2 block can change the values of the result zi to zi, the
The original motivation for introducing SD representation error value is e = eir" with ei < 2a. Now we can choose an

was to eliminate the carry propagation chains in addition integer m for which < e >m= 0 iff e = 0. This condition is
and subtraction [9]. In fact, given two operands x and y the satisfied for all m for which
addition operation can be split in the two operations

Wi = Xi + Yi-rci (2) m > 2r + 2a-2 > 2r + 2(r-1)-2 = 4r-4 (6)

Zi = wi + ci_i (3) Using m = r2- 1 equation (6) become r2-4r + 3 > 0
that is satisfied for all radix r > 3. The implementation of

where the adder modulo r2 - 1 can be implemented by using the
f 1 if (xi + yi) > a end-around carry structure shown in fig. lb).

ci -if(xi+yi) <-a (4)
Oif |xi +yil < a IV. ERROR DETECTION IN SIGNED DIGIT CONSTANT

being wi C {-a+1. ... , -1, 0, 1, ... , a - 1} an auxiliary MULTIPLIERS
variable. This representation allows to implement a carry-free The shift and add implementation of constant multipli-
adder using a block ADD1 for the equations (2) and (4) and cation performing the operation c = k a can be easily
a block ADD2 for the equation (3), connected like described extended to the signed digit representation using a shift and
in Fig. la). add/subtract architecture [14]. The multiplication for the radix

r is performed simply shifting the digits of a, while the
III. ERROR DETECTION IN SD ADDERS multiplication for -r is done shifting and inverting all the

digits. To minimize the number of adders required to performs
It is widely know that an adder can be checked using check constant multiplication the number of non-zero digit mustobe

symbols that are residues of the number modulo some base. mini mize ie..catozn the contanof the mipier (e
The check symbols are able to detect any kind of fault inside [15]mfor etl. Aantexamplet e show the iplemetaio
the adder if the erroneous value have the check symbols .15fo deal).sa xml esonteipeetto
theiaderet ifr the erroneousvfthfaulue hvete hecktion.sbol of a radix-4 constant multiplier using as a constant the valuedifferent from the ones of the faulty free operation. For an 35Thdietmpmnaiocnberlzdas5a

addr wth he hec sybolbasd o reidu coes his35. The direct implementation can be realized as 35 a =
adder with the check symbol based on residue codes this (16 + 16+4- 1) -a =16a + 16a + 4a - a, using four adders.

The value can be factorized as 35 = 7 5 = (4+4-1 ).(4+ 1),
< a + b >m#< a + b + e >m=> < e >m# 0 and using the auxiliary variable b the multiplication can be

performed using 3 adders as shown in the following formulas:
Where < >m is the modulo m operation, a and b are the b = 5 a = 4a + a
operand of the adder and e :t 0 is the error due to a fault b =a4b+4
inside the adder. For a radix r signed digit adder the faults 7. b - b

can occur in the ADD1 and ADD2 blocks of fig. la). In Fig. 2 the direct and factorized implementations of this
A fault in the ADD1 block (or in an input digit ai or bi) multiplier are shown.

can change the values of the intermediate results wi, and ci. We notice that each adder used in the constant multiplier
If we define wi C {-a ...,... .,-1, 0, 1, .. .,a-1} and ci C satisfy the condition described in the previous section and
{-1, 0, 1} the faulty intermediate results, the error value can therefore can be checked by using the residue modulo r2- 1
be computed as: of the operand. Using the single fault occurrence hypothesis
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Now, let us analyze the behavior of this structure in presence
1 6 of a fault. For the most significant digits a fault can only affect

one of the lines transporting the digits throughout this block
and therefore change the value of a single digit. Instead, if a

a 4 fault occurs in one of lines transporting the less n digit, in a
line transporting the check symbol < a >m, or in the modulo
m adder that computes < b >m only the check symbol is
affected by this fault and therefore can be detected as in the
cases described in the previous sections.

4 VI. ERRORS IN FIR FILTERS

+
b

+ In this section the considerations discussed above are used
4 to implement a complex arithmetic structure like a Finite

-1 +ec Impulse Response (FIR) filter. The equation of a FIR filter
is:

p
Fig. 2. example of a radix 4 Signed Digit constant multiplier (k=35) y(n) = : akx(n-k) (7)

k=o

[3], [4] we can use a block that take as input the check symbol where x(n) and y(n) are the input and output sequences, and
< a >m and compute directly the operation < k a >m=<< ak are the filter coefficients. If no truncations are performed in
k >m * < a >m>m. This check symbol can be used to the hardware implementation of the FIR filter the Concurrent
detect the occurrence of a fault inside the constant multiplier Error Detection (CED) can be done computing the residue
checking if < c >m=<< k >m K< a >m>m only after modulo m of y(n) directly starting from the residue modulo
that all the addition and shift operations are performed. This m of the input sequence x(n). In Fig. 3 an implementation of
approach can be used also if the constant multiplier is a the CED scheme is presented,
block of a more complex circuit, allowing to perform the error where the operations performed by the block computing
detection only at the last stage of the overall structure. < y(n) >m are performed modulo m. If no truncations are

V. ERROR DETECTION IN SIGNED DIGIT TRUNCATION performed in the filter structure the computing of < y(n) >m
OPERATION can be done in parallel with the computing of y(n), otherwisethe discarded digits are treated as additional inputs for the

The truncation operation is commonly used in complex block computing the check symbol, following the equation
arithmetic systems to avoid the increase of the number of presented in section V. The area overhead of the CED structure
digit during the computation. To avoid that the circuit be- with respect to the basic implementation is quite independent
come unfeasible due to the number of digit to be processed by the number of digits used for the FIR filter. In fact, only
truncation operations are performed in order to reduce the the area overhead of the two blocks computing the < >m
dynamic range of the intermediate results. For positional operation, and eventually of the blocks used to face the effect
number representations the truncation operation consists in of the truncation operation depend by the number of digit used
discarding the less significant digits, while for non positional in the filter. The other operations performed in the additional
number system like RNS [14] a suitable scaling block must hardware requires only the two digits needed to represent the
be used. If we discard the less significant digits a problem numbers modulo m. Finally, the block named equality checker
arise in the error detection strategy explained in the previous can be implemented as a two-rail equality checker [3], [4] in
sections. We outline that this problem arises for almost all the order to avoid undetectable fault inside this block.
error detection methods based on the arithmetic properties of
the operands.

If a is represented in the radix r SD number system the
truncation can be defined as: In this paper a methodology for the concurrent error detec-

tion of fault in r-radix Signed Digit (SD) arithmetic operations
b trunc(a) = (a-< a >. )/,n is presented. A residue checking based technique is applied

to detect errors caused by faults inside the hardware used to

whenfrentthe t
< f. oprtl ion isvt)performedtakng th less< implement operations in the SD number system. A fault insidesignificant n digit of a and it is easily to see that < b >m&< teadrcnb hce yuigacmltl needn

a >m ithr2 -1. I we uppos tha the runction circuit that use check symbols that are residues of the numbers
opertioniserfomed n a eve numer f diits we modulo a suitable base. This property is used to extend the

obtain<b >m=< a- < a>>m and we can compute...fault detection also to SD constant multipDlier and to the< b >m starting from < a >m and from the less significant trnato oprto. Ths prprte alow to eaiyipe
m digitsofaisthisway: ~~~ment complex arithmetic circuits that had the concurrent error
< b >m=< a >m-<«a >rn>m detection property and additionally can exploits the carry-free
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Fig. 3. CED scheme for a FIR filter

property of the SD representation to realize very fast arithmetic
computations. In the paper the method is applied to a FIR
filter architecture in order to demonstrate its effectiveness.
The example shown that the CED scheme requires a low
overhead with respect to the basic implementation (the non-
CED scheme) and this overhead is quite independent by the
number of digits used to perform the filter operation.
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