A Fault Tolerant Hardware Based File System Manager for Solid
State Mass Memory

G.C. Cardarilli, M. Ottavi, S, Pontarelli, M. Re, A. Salsano

{ cardarilli,ottavi,pontarelli,re,salsano} @ing.uniroma2.it

Department of Electronic Engineering University of Rome “Tor Vergata”, Italy
Via del Politecnico 1 00133-Rome-ITALY

ABSTRACT

In this paper the hardware implementation of a file sysiem
manager for a fault tolerant Solid State Mass Memory (SSMM) is
presented. A hardware implementation of the file system manager
implies the following advantages: ad hoc fault tolerant design
and graceful . degradation capability. The former means
developing special fault tolerant hardware for each file system
basic function (read, write and delete). For each jfunction
different foult tolerant techmiques have been applied by
considering the impact of different faults on the architecture
reliability. Also the area overhead introduced by the chosen fault
tolerant rechnigue has been evaluated.

Graceful degradation is obtained in terms of data connection
reconfiguration and reduced functionality set. We exploited the
modularity of the design to implement a distributed file system by
means of local handlers on each memory module connected fo a
dynamic routing module. The file system manager has been used
in a SSMM oriented to satellite applications.

An FPGA implementation for the complete SSMM has heen
obtained in order to evaluate the performances and reliability of
the SSMM architecture and in particular of the file system
manager.

1. .INTRODUCTION

In the past, magnetic tape recorders have been used to store the
large amount of data coming from instruments loaded on
satellites,. While a tape recorder can provide several gigabits of
non-volatile storage, its mechanical and electromechanical parts
have insufficient operational flexibility and reliability for the
space missions planned for the future.

On the other hand, the rapid growth in capacity of semiconductor
memory devices, quadrupling every three years, now permits the
development of SSMM, which are competitive with tape
recorders due to their higher reliability and better performances
(11 [2].

Solid-state mass memories have no moving parts and their
operational flexibility has made them suitable for many
applications.

The final architecture.of a SSMM for space applications depends
on the level of reliability and security required. Reliability is
mainly related to the capability of the memory to store a
minimum quaniity of data after a certain working time while data
security is related to assuring data integrity after hard or soft-
errors. The design of a SSMM for space applications must be
performed by considering reliability and data integrity
requirements. Reliability improvement is obtained by introducing
redundancy in the architecture; data integrity is achieved by using
suitable algorithms for error detection and correction - normally
based on Error Correcting Codes (ECC).

In this work system reliability is increased through the
introduction of architectural redundancy. Moreover, single point

0-7803-7761-3/03/$17.00 ©2003 1EEE

of failure (typical of bus based architecture) is avoided adopting a
crossbar switch matrix [3]. This solution also grants higher
throughputs in the data transfer, permitting the use of parallel
concurrent connections between users and memory banks. In
fact, in a typical satellite application several sensors or other data
collecting/transmitting devices need to access simultaneously the
on board SSMM.
The SSMM logical organization is based on a file system
structure. The file system is completely managed inside the
SSMM and the users have no need to know the physical location
of the stored data. The access to the SSMM uses file names, and
high level commands for their management (read, write, delete).
The hardware implementation of the file system implies different
advantages: higher speed, graceful degradation through the
distribution of the management of the memory modules and
possibilities to use the very efficient techniques available for
detection and correction of errors in hardware structures.
Moreover, these management blocks can be implemented with
low hardware complexity with respect to the use of general
purpose microcontrollers.
For each function different fault tolerant techniques have been
applied by considering the impact of different faults on the
architecture reliability. Also the area overhead introduced by the
chosen fault tolerant technique has been evaluated.
The graceful degradation is therefore obtained in terms of
e Data connection reconfiguration capability (the router
is able to exclude a faulty memory module reassigning
the connection to another module)
® Reduced functionality set (for instance a memory
module can loose its writing capability but can still
read),
The paper is organized as follows. In Section 2 a brief description
of the SSMM architecture is given, while in Section3 we
describe the file system design methodology. In Section 4 the
hardware FPGA implementation of the proposed architecture is
presented and, finally, in Section 5 the obtained performances in
terms of reliability are analyzed. The conclusions are drawn in
Section 6.

2. THE SSMM ARCHITECTURE

In this section a description of the SSMM is given,

The SSMM is depicted in Fig. 1. Different links can be used to
communicate with the SSMM. The Spacewire (IEEE 1355 DS-
DE) protocol [4] has been used in this application. In fact,
Spacewire is planned to become an European Space Agency
(ESA) standard for on-board data-handling in the near future and
is expected to be widely used in future European missions [5][6].
Each SpaceWire link can carry data at around 100 Mbit/sec over
distances of up to 10m. SpaceWire is intended to support the
ready reuse of equipment developed for space applications.
Moreover, the SSMM can be connected to a MIL-1553 bus,
normally used in satellite piatforms,

V-649

The SSMM architecture can be split in several sub-units (Fig.1):

1. System Control Unit (SCU)

2. Independent Memory Array Modules (IMAM);

3. Routing Module;

4. 1/O Link Intetfaces;

5. T/O Memory Interfaces;
The System Control Unit manages the user access and the
memory resources. This module is connected with the rest of the
SSMM system through a message bus that allows communicating
either the detection of a fault, or the messages necessary to
handle the packet routing control.
The system uses two microcontrollers that can be connected or
insulated from the system through a bypass block. Normally only
a single processor is active and connected to the system, while
the other one is in stand-by and electrically insulated.
A signature analysis block [7],[8] controls the correctness of the
operations performed by the microcontroller.
Each IMAM is composed of several SDRAM chips, the contral
circuitry and a Reed-Solomon codec. The IMAM 15 able to
support variable data word length and the EDAC unit supporis
variable codeword length.
The memory architecture uses # chips for the codeword group, &k
chips to store data, n-k chips to store the check symbols, and s
chips for the cold spare. This board organization allows on-line
reconfiguration of the memory module with different error
correction code structures, depending on both the application
considered and the data integrity requirement.[9]
In fact, it is possible to choose the codeword length among », 1/2
n or 1/4 n. increasing the memory washing frequency, it is also
possible to reduce the code length maintaining the overall bit
error rate {BER). Of course, this solution reduces the availability.
Code parameters are optimized for a specific mission using the
optimization tools presented in [9][10].

S
ACTVE | SPARE
RAM oM
CHECER
F.Y
|)
ML 1553 BUS T 1355TOMEN BFTOHEN voan 1355TOKEN

Fig.1- SSMM Architecture

I/O Interfaces are divided into two groups: /O Link Interfaces
and [/O Memory Interfaces. The packet routing contrel and the
dynamic reconfiguration of the system in case of faults are
handled by the HW/SW interaction between these interfaces and
the Systern Control Unit. Once a connection between two
interfaces is held, the data flow control is achieved by means of a
full handshake.

The IO Link Interfaces are the front end of the system providing
the transport of data and messages. The Routing Module is the
central switch that interconnects the users with the memories.

The paths inside the routing module are dynamically
reconfigurable, as shown in [8].The memory is organized in
pages of fixed length and each file is composed of a variable
number of pages. The correlation between files and pages is
stored in a File Allocation Table (FAT). The size of each page
has been fixed to 32 KB.
Each memory interface implements the following basic
functions:

e Delete function: used to delete a file from the FAT

e Read function: used to read a file from the memory

® Write function: used to write a file in the memory
The YO Memory Interfaces provide the distributed file system
management capability. The file system management has been
designed to grant multiple concurrent accesses to the memory
modules. We developed a distributed control on each memory
interface that performs most of the above-mentioned functions.
The System Control Unit is responsible of the dispatch of
command messages to the memory interface in order to activate
their built-in FAT functions. In this way, the file system
management policy can be changed by reprogramming the
microcontroller.
The desired reliability of the SSMM system 1s achieved both by
means of architectural redundancies, and by introducing Error-
Correcting Codes (ECC), granting data integrity (Fig. 2).
In this figure, for each unit are indicated the sub modules and in
the final row, the adopted fault tolerant technique.

SYSTEM

SUBUNIT

FAULT
TOLERANCE
TECHRNIQUES

Fig. 2 SSMM partitioning and adopted fault tolerance
techniques

3. FAULT TOLERANT FILE SYSTEM
DESIGN

The hardware file system manager consists in a set of memory
interfaces connected to the memory modules. Each memory
interfaces performs independently all the FAT functions. In each
memory interface the read, write and delete functions are
implemented through separate HW blocks.

A system with graceful degradation capability can be developed
exploiting this design approach. In fact, the SCU can exclude
from the set of addressable destinations of the data traffic the
interfaces affected by an unrecoverable fault. Moreover, the
independent file system management on each module allows

V-650

turning off some memery modules in order to reduce both the

power consumption and the failure rate.

In fact, is widely known that a de-rating factor of roughly 1/10

can be applied on the failure rate of a switched-off module [11].

It is straightforward that the trade off between reliability, power

and throughput depends on the final application requirements.

We therefore obtained the following objectives:

1. scalable architecture that can be easily adapted to the
mission requirements

2. high throughput due to the highly parallel architecture

3. capability to reduce the power and failure rate of the
memory by simply turning off the unused modules

4. graceful degradation of the system both in terms of
functionalities performed by each memory module and of
availability of the service

5. protection of the implementation of each function using
different fault tolerant techniques.

For deciding the design strategies, we evaluated each function in

terms of the impact of its failure on the overall performance of

the SSMM system. In particular, we evaluated both the impact of

permanent and transient faults after their detection.

The functionalities of a block affected by a transient fault can be

recovered, after its detection, simply reinitializing the hardware

block. Therefore the impact of a transient faults is mainly reiated

to the stored data integrity.

On the other hand, permanent faults cause the unavailability of

one of the implemented functions; therefore, their impact is

mainly related to the performance assessment.

. Write | Read | Delete
Transient faults Critical - Critical
Permanent {aults - Critical -
r Latency Critical - Critical
Table 1: transient and permanent fault impact on file system
functions

The results of these evaluations are reported in Table 1.

The table can be explained as follows: the occurrence of
transient faults on the functions that access the memory in write
mode (like write and delete) are critical because they can cause
unrecoverable incongruences on the FAT of the module and
consequent data loss. Instead, transient failure cccurrence on read
function has no impact in terms of data integrity while causes a
possible delay in the accomplishment of the function. In fact,
after a temporary fault is detected on the read function, a message
to the user signals the possible corruption of sent data. The re-
initialization of the faulty hardware block allows reading the
correct data. The impact of permanent faults was evaluated with
respect to degradation of the system functionalities.

It is obvious that the loss of the read function has a greater impact
on a module than the other functions, since it is useless writing
data on a memory module that cannot be read.

Finally, to choose the fault tolerant technique to be applied to
each file system basic function, some consideration about the
fault detection latency must be drawn. In fact, some blocks must
guarantee low detection latency in order to avoid unrecoverable
effects, while other blocks have no strict latency requirement. For
the latter blocks a detection based on signature analysis allows
low area overhead, for the former ones the detection is based on
Concurrent Error Detection (CED) techniques [14].
To tolerate permanent fault different choice can be made,

Triple Modular Redundancy (TMR}, allows both detection and
cortection with low latency and high area overhead.

The use of CED with a cold spare module allows better reliability
(the failure rate of the cold spare is 1/10 of an active one) with a
area overhead slightly lower than the TMR and a down-time
needed to turn on the spare module. Signature analysis, with a .
cold spare module, allows low area overhead at the cost of both
higher error detection latency and down-time.

4, FAULT TOLERANT FILE SYSTEM
IMPLEMENTATION

In Table 11 the area occupancy of the write, read and delete
hardware blocks in terms of FPGA Complex Logic Blocks
(CLBs) are summarized. The above results have been obtained
for a XCV1000 Xilinx Virtex™ device by using Synplify™ {13]
as a synthesis tool. By using the required level of reliability,
petformance, power consumption and the results of Table 1, for
each basic block, ad hac fault tolerant detection and redundancy
techniques can be chosen.

Write. |- Read - |~ Delete
[#CLB 652 260 178
Table II: area occupancy of FAT functions

Table I and Table iV show two possible sets of fault tolerant
techniques that can be applied to the file system functions.

In Table I (Set A) CED techniques are applied to the write and
delete functions reducing the latency of the transient and
permanent fault detection that could lead to irreparable FAT
incongruities according to the results reported in Table 1. This set
of solutions has a limited area overhead because no spares are
introduced. The drawback of this choice is that when a permanent
fault is detected, the function can’t be recovered and the
performance of the mass memory is degraded.

Wiite -] " Read | Deleté
. . Signature
Detection technique CED Analysis CED
Redundancy None None None
#CLB 1015 390 265

Table III: characteristic of Set A

In Table IV (Set B) CED is applied to both write and delete
functions while TMR is applied to read function to provide better
reliability and lower read latency.

Write- | Read .l Delete

Detection technique CED CED

Redundaney Cold spare TMR Cold spare

CLB 1630 803 445

Table IV: characteristic of Set B

Lower read latency is a requirement for Low Earth Orbit {LEO)
satellite. In fact, the short window of visibility requires the
implementation of fast downloads with no repetition. This set of
solutions has a higher area overhead with respect to the previous
one. On the other hand, when a permanent fault is detected, the
functionality can be recovered using the redundant blocks and the
performances of the mass memory are not degraded. Depending
on the selected set of solutions different level of reliability can be
obtained, as is described in the following section.

V-651

5, PERFORMANCE EVALUATION

The performance evaluation of the system can be done both in
terms of reliability and throughput. The graceful degradation
capability can be evaluated by calculating the probability that the
system works correctly at different level of performance. This
approach is guite similar to the performability defined in [12].
Given a certain failure rate A of a single CLB we can estimate the
reliability of the various file system functional blocks for the
FPGA implementation. We assume that the reliability of each
block is the reliability of the series of the CLB needed o
implement the function. Therefore, the failure vate of the
functions can be expressed as follows:

hw=652%L; Ag= 260%%; hp= 178*;

Where: Aw, A, Ap are the failure rates of the write, read and
delete blocks, respectively.

In a configuration with only fault detection capability {Set A),
inside the memory interface, the refiability can be assumed as the
reliability of the series of the function blocks. The failure rate Ay
of a single memory interface is:

)\.M1=1.w+7\,R+lD;

Using this failure rate we estimate the reliability of the overall set
of memory interfaces at different level of performances for a
4 Gigabytes 3SMM composed of four | Gigabytes memory
modules. The possible levels of performance are defined as the
amount of memory available. If we have n interfaces, the
reliability with r interfaces functioning is:

R, Z(]R(r) T0-re)]™

Where R() is the reliability of a single interface.

If an unrecoverable fault is detected, the SSMM is reconfigured
reducing the available storing capability. In Fig.3 we draw the
reliability curves. We can notice that the reliability to a typical
End of Mission (EOM) of 36 months is about 70% if complete
availability is required (4 GB), while, in case of 75%, 50 % and
25% storage capability the reliabilities are above 95%.

The use of redundancy inside the memory interface (Set B)
provides better reliability for each | memory interface.

roides et |

1 e
.

S TS

| oos | e,

’

[e |

| 08 o

Pai e, l
.

:
er ! e,
.

26 -
EOM

05 ¢ - —

02 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

P

i !.e Reliability af 4 GB {100%
~ Rolabiey 8 2GB (50%) =~ Rolabilly al 1 GB (26%)

Flg 3 Relmblllty curves for different perl'ormam:es

In fact, with this configuration and the same failure rates for each
hardware block (Aw A Ap) we can apply the formulas given in
[14] to calculate the reliabilities of a TMR configuration and cold
spare configuration.

Using the obtained reliabilities of the hardware blocks the
reliability curves of Fig.3 can be recalculated. In Table V we
show the improvement of the reliability for each performance

configuration at the EOM.
R(t) =3 years 4GB 3GB 2GB 1GB
Set A 0,7057 0,5638 0,9979 0,8999
Set B 0,9893 0,9999 0,9959 0,999

In

Table V: reliability comparison @ EOM
6. CONCLUSIONS

this paper we presented a hardware implemented file system

manager for a fauit tolerant SSMM.

We have described the methodoiogies used for the architectural
design. In particular, we have evaluated the impact of faults and
their detection latency for each block. Starting from these
evaluations we applied the most suitable faulit tolerant techniques.
We evaluated the reliability of a configuration of 4 GBytes
SSMM with respect to the improvement gained with the
introduction of the selected techniques. Partitioning the system
into four independent modules we obtained graceful degradation
capability in terms of storage performances. Finally, to improve
the overall reliability we introduced suitable redundancies on
each hardware block.

(1]

(2}

[3]

14
[51
(61
(7

8]

(%1

[10] G.C. Cardarilli,

[

{12} 1. F. Meyer,

7. REFERENCES

M.P. Kluth, F. Simon, J.Y. Le Gall, E. Muller, "Design of a fauit
tolerant 100 Gbits solid-state mass memory for satellites”, VLS1
Test Symposium, 1996, Proceedings of 14th , 1996,

Fichna, T.; Gartner, M_; Gliem, F.; Rombeck, F, "Fault-tolerance
of spacchbome semiconductor mass memories”, Fault-Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual
Intemational Symposium on , 1998 .

M. Ottavi, G.C. Cardarilli, P. Marinucci, S. Pontarelli, M. Re, A,
Salsano, "Development of a dynamic routing system for a fault
tolerant solid state mass memory”, ISCAS 2001.

SpaceWire Home Page
htipi/fwww esteg,esa.nl/tech/Spacewire/index.htm}

D. Maeusli, F. Teston, P, Vuilleumier, R. Harboe-sorensen "ESA
Developments In Solid Sate Mass Memories", in ESA publication

§.M. Parkes, “Spacewire: The Standard”, DASIA'9S

Mahmood, A.; McCluskey, E.J. “Concurtent error detection using
watchdog processors-a survey”™ Computers, IEEE Transactions on ,
Velume: 37 Issue: 2, Feb. 1988 pp 160 -174

Saxena, N.R.; McCluskey, E.J. “Parallel signature analysis design
with bounds on aliaging” Computers, [EEE Transactions on ,
Volume: 46 Issue; 4, April 1997 pp. 425-438

G.C. Cardarilli, P. Marinucei, A, Salsano, "Fauli-tolerant Solid
State Mass Memory for Satellite Applications", IMTC'98

S. Bertazzoni, M. Salmen,
of Fault-tolerant Solid State Mass

P. Marinucci,
A Salsano, "Design
Memory" ,DFT'99.

1 Military- Handbook 338B

“On evaluating the performability of degradable
computing systems,” IEEE Trans. Computer, vol. C-29, pp. 720-
731, Aug. 1980,

(3] Synplicity Home Page htip://www.synplicity.com

[14] Parag K. Lala,

V-652

“Fault tolerant and Fault Testable Hardware
Design”, Prantice Hall, 1985,

http://www.synpliciIyycom

