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Abstract 

This paper presents the principles of two different approaches for the study of the effect of transient bit flips 
on the behavior of processor-based digital architectures: one of them based on the on-line “injection” and 
execution of pieces of code (called CEU codes) using a suitable hardware architecture, while the other is 
performed using a behavioral level processor description, being based on the so-called  “saboteurs” 
method. Results obtained for benchmark programs executed by a widely used commercial 8-bit 
microprocessor, allow to validate both approaches which provide inputs for an original error rate prediction 
methodology. The comparison of predictions to measured error rates issued from radiation ground testing 
validates the proposed error rate prediction approach. 
 

I. Introduction 
The concurrency of both high level integration and electronic system wide diffusion is leading to a constant 
need of reliability performances improvement for the electronic designs. In fact, while the wide diffusion of 
electronic systems is permeating also areas where the reliability is an extremely important issue, on the other 
hand the integration process is leading to the occurrence of transient effects like bit-flips of memory 
elements due to the interaction with radiation (alpha particles, heavy ions) or to electromagnetic noise. In this 
section are described techniques of Fault-Injection we applied to the 80C51 microprocessor. The considered 
faults are limited to changes in the content of internal memory elements. Indeed, this model generally called 
bit flip, upset or SEU (single event upset) represents presently the most likely fault type due to the operation 
under radiation of integrated circuits [1].   Moreover, the constant improvements in the manufacturing 
processes make the circuits sensitive to the effects of neutrons present in the Earth’s atmosphere and 
constitute a significant challenge to the reliability for electronic equipments of the close future [2]. 
Therefore, it is of high importance the characterization of electronic systems with respect to their sensitivity 
to the transient bit flip effects. This characterization can be performed using well-known fault injection 
techniques aiming at perturbing the normal function of the system under study to evaluate the generated 
effects. The results of such experiments can provide a useful feedback to the designer of fault tolerant 
systems in order to implement efficient techniques of fault detection and system recovery or fault masking.  
 
Existing fault injection techniques [3] related with transient faults provoked by radiation can be classified in 
the following main categories: 
 
1. Radiation ground testing 
2. Hardware/Software Implemented Fault Injection 
3. Simulated Fault Injection 
 
The first technique consists in exposing the device under test to a suitable radiation beam that causes the real 
occurrence of the physical events affecting it [4]. This kind of experiment is realized on-line, with the DUT 
performing an activity supposed to be representative to the one carried out during its operation in the final 
application. Such radiation ground testing entails thus hardware and software developments that may require 
a significant and time costly effort. We consider the results of this technique as a reference to evaluate the 
results obtained with the other ones.  
 
The second technique uses also the physical device but the events are simulated by means of the execution, 
concurrently with the execution of the application program, of pieces of software that modify the content of 
memory cells (registers, internal memory) that are the privileged bit flip targets [5][6]. Finally, the third 
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technique [7] makes use of an HDL model of the device, for which code modifications are implemented in 
order to virtually change run-time every part composing the device.  
 
In order to evaluate the impact of the injected fault, a mandatory step of each of the above mentioned 
techniques is the comparison of the obtained results with expected ones, issued from a fault-free performance 
of the same activity (the execution of a program in case the device under test is a processor). 
 
The main objective of this work is the confrontation of these three techniques when applied to a 80C51 
micro controller running two simple programs. The device chosen to be focused by this study being a 
processor,  it sensitivity to bit flips can be strongly related to the executed program. Bit flip faults were 
injected run-time during the execution of two benchmark software applications: a bubble sort of an integer 
vector and a 6x6 matrix multiplication program. The goal was to evaluate the application cross-section, 
magnitude generally given to quantify the sensitivity of a device with respect to SEUs, which is the quotient 
between observed errors and number of injected errors, of both benchmarks. 
 
In section II is described the technique used to inject faults using a VHDL description of the 80C51 micro 
controller along with simulation results obtained when injecting faults during the execution of test-bench 
programs. Section III is devoted to briefly present the CEU injection technique and the results of its 
application using a dedicated hardware. Results of both experiment types are compared in Section IV to 
results obtained during radiation testing experiments performed using a cyclotron to expose the target circuit 
to particle beams. Preliminary conclusions and future work are drawn in Section V.  
 

II. Fault injection using a behavioral description 

A) Bit-flip injection using a VHDL description  

 
Using behavioral descriptions to study the consequences of faults for complex circuits has been widely 
proposed in the specialized literature. A review of VHDL-based techniques can be found in [8]. Here we 
have applied the so-called “saboteurs” technique to a VHDL behavioral model of 80C51 in order to study the 
effects of bit flips when executing a program. The VHDL model uses an array of 8 bit vectors in order to 
simulate all the 128 internal RAM bytes and Special Function Registers (SFR) included in the 8051 
architecture. 
Series of tests were performed where faults were randomly injected both in location of the affected bits 
inside this array and in time of the SEU occurrence. Note that injected faults did not target the memory bits 
of program code to be executed by the micro controller, the fault injection being performed by means of 
suitable modifications added to the VHDL signals within the emulated 8051. 
 
The setup of the experiment was therefore a simulation setup. In fact, we generated a VHDL schematic with 
the instantiation of the studied micro controller and other needed blocks. The main blocks are: 

• 8051 
• SRAM 64k 
• ROM 4k 

These blocks were simulated using a commercial VHDL simulator [9]. The only modification we made to 
the VHDL model was to add a saboteur process able to inject bit flips inside the registers within the 8051. 
The VHDL simulator, concurrently with the normal processes emulating the 8051 micro controller, executes 
the saboteur process. Therefore the activation of fault injection, performed by means of the two extra signals 
IND and BIT, is totally independent and asynchronous to the state of the 8051.  
In fig. 1 is shown a schematic description of the fault injection strategy in a general case. The VHDL 
behavioral description of the 8051 can be seen as a set of concurrent processes, each one implementing a 
function of the micro controller (ALU, PC incrementer, Watchdog, etc.) and the communication between 
these processes is provided by a set of internal signals visible to all the processes. Some of these signals have 
physical counterparts like SFR, RAM, PC and others. The saboteur is a special process that runs 
concurrently to the other processes and is activated, in our case, by two external commands IND and BIT. 
When normal operation (without fault injection) is carried out the saboteur is in a stand-by mode, when the 
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fault injection is activated, the saboteur modifies an internal signal inverting its value. In this way the 
saboteur provides an asynchronous SEU injection on any internal signal of the VHDL description. 
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Figure 1:  “Saboteur” process 

It has to be noticed that, in order to have a realistic behavior of the micro controller, the injection must be 
performed only on those signals representing physical registers. Assuming that the SEUs mainly affect the 
internal registers rather than combinatorial logic, we isolated the signals representing these registers and 
made them our SEU injection target. 
 
In fig. 2 is shown the external 8051-module instantiation with fault injection capability. The IND and BIT 
signals appear as two additional ports of the 8051 and are driven by the simulator executing a macro file. 
IND signal indicates the address of the internal byte to be affected by the injected fault and BIT indicates the 
specific bit to flip. The instant of the injection is forced by the macro together with these two addresses. 
The fault injection technique is composed of the following steps. First is defined the time width of injection 
zone relatively to the program that must be tested, secondly is defined the number of logical targets that must 
be used in order to inject error in all internal register (in this case 152). Once both these ranges are 
determined, the macro routine is generated for executing test using a suitable C++ program. The C++ 
program is based on recursive algorithm, the first step of each cycle is the generation of time variable for 
error injection (into the predefine injection zone interval time), the second step is the generation of logical 
targets of injection, both byte and bit addresses. Finally the C++ program writes the correct macro file 
commands for fault injection.   
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Figure 2: Structure of VHDL 8051 model with fault injection capability 
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B) Setup of a VHDL fault injection Campaign 

 
Setting up a fault injection campaign requires the following steps: 
 

- Analysis of the VHDL model  
- Set up of the Saboteur process 
- Set up of the Macro generator Program 
 

In principle these steps can be applied to any VHDL description of a digital system including memory 
elements. For instance, can be corrupted by this method the content of  bits of a Finite State Machine status 
register, as well as the internal registers of a micro controller description. The first step requires the analysis 
of the VHDL description to find the targets suitable for bit-flip injection. The second step is done adding the 
saboteur VHDL process described above, capable of modification of the value of the selected target. The 
third step is the generation of the macro file that drives the simulator engine giving both the stimuli to the 
VHDL description of the device under test (like clock reset etc) and the randomly generated activation 
stimuli for the saboteur process. 
The first step is the more important change to be afforded when a new device VHDL description must be 
tested. Once the targets of the VHDL code are identified, the modifications related to the second step consist 
in the connection of the saboteur to the selected target. The stimuli for the macro generator to the saboteur 
are almost the same while the stimuli for the DUT VHDL description are strictly related to its functions.  
Therefore, once the setup phase is performed the fault injection campaign can be carried out in batch mode, 
the length of the simulation depending on the complexity of the VHDL model. 
In the following paragraphs are described the results obtained when applying this injection strategy to the 
8051 VHDL description while running two test bench applications.  

 
 

B.1) Matrix multiplication  
 
The matrix multiplication program operates in four phases (fig. 3), in the first phase, some internal registers 
are set in order to initialize the system, in the second phase, the 6x6 matrixes are generated and stored in the 
internal RAM, in the third phase the 6x6 product matrix is generated (this is the more time consuming 
phase), in the last phase, the result matrix is compared to the expected one and the incorrect results are stored 
in the external RAM. We define the “Test” as the union of all these four phases, and define the “Injection 
Zone” as the union of “generate matrix” and “product of matrix” phases. At the end of each test the system 
provides the dump signal that generates a report of errors revealed during the result control phase. 
 

0   8.3µs                  994µs                                10.795ms                 12ms

Initialization

Generate Matrix Product of Matrix Result control

Injection Zone

 
Figure 3: Phases of Test for the matrix multiplication program 

We assume for this study that only single bit flips may occur during the execution of the multiplication 
program (the injection of multiple bit flips is also possible). The bit flip injection will arise only within the 
zone called “Injection Zone” with a random (uniform) distribution in time and in location. 
The whole test lasts about 12 ms. The obtained results, in terms of percentages of errors with respect the total 
number of injected bit flips, are reported in table 1 classified as tolerated errors, result errors and lost of 
sequences. “Tolerated errors”, correspond to those bit flips injected in memory elements which do not cause 
any effect at the outputs of the program. “Results errors”, gathers cases where obtained results are different 
from the expected ones. Finally, the cases where we do not get any answer from the processor are classified 
in the loss of sequence group. The consequences of injected bit flips belonging to this last malfunction type 
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are unrecoverable, needing to restart program execution. The results were analyzed in detail to determine the 
number of wrong elements in the result matrix obtained in each faulty execution.  
 

Table 1: Results of bit flip injection for the matrix 
multiplication program 

 
Injected Faults Numbers 2416 

Lost of Sequences 134 
Result errors 1068 

Tolerated Errors 1348 
Result Errors Percentage (%) 44,20 % 

Lost of Sequences Percentage (%) 5,54 % 
Overall Percentage of Result Errors 49,74% 
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Figure 4: Number of errors per execution 

 
 
In figure 4 is reported a histogram obtained from table 1 and normalized to the total number of tests, 
representing the probability distribution of the error within a single test. An explanation of these results could 
be that the propagation of an injected SEU is related to the fault injection instant. In particular the 
experiments leading to six errors suggest that was corrupted a value of one of the 2 matrixes before they 
were multiplied. The latency of these unelaborated data inside the micro is quite long; in fact, if we inject the 
bit flip during the generation of the matrixes the incorrect value of the multiplicand matrix will generate 6 
incorrect values on the result matrix. Also during the elaboration the SEU injection could affect unelaborated 
data but with a lower probability while the elaboration proceeds.  
 

B.2) Vector sorting program 
 
The second experiment was made using a vector-sorting program. This program operates in five phases as 
shown in Fig. 5. In the first phase, some internal registers are set in order to initialize the system and a 30 
element vector is generated and stored in the micro controller internal RAM. In the second phase, the 
original unsorted vector is stored in the external RAM. In the next phase the vector stored in the internal 
RAM of 8051 micro controller is sorted, this is the more time consuming phase. In the fourth phase the 
sorted vector is copied in the external RAM, this is the last phase of injection zone. In the last phase, the 
result of sorting algorithm is tested and the incorrect results are stored to the external RAM. Note that in this 
case the number of maximum possible errors is 30.  
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Write Vector Result control

Injection Zone

Write to EXRAMVector Sorting

 
Figure 5: Simulation phases of  Vector sorting program 

In this case we define the “Test” as the union of all these five phases, and define the “Injection Zone” as 
union of “Write vector”, “Vector sorting” and “Write to exRAM” phases. At the end of each test the system 
provides the dump signal that generates a report of errors revealed during the result control phase. The test 
follows the same steps of the previous one and the fault injection and result analysis are made in the same 
way.  
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Like in the matrix product test, the injection of bit flip occurs only within the zone called “Injection 
Zone”. The whole test lasts about 12ms and the percentages of result errors, tolerated bit flips and 
lost of sequences are reported in table 2. Moreover, we analyzed the results with details to evaluate 
how many wrong results in the vector were detected in each faulty test.  

Table 2: Result of bit flips while executing  the vector 
sorting program 

 
Injected Faults Numbers 2609 

Lost of Sequences 36 
Result errors 555 

Tolerated Errors 2054 
Result Errors Percentage (%) 21,27 % 

Lost of Sequences Percentage (%) 1,38 % 
Overall Percentage of Result Errors 22,65% 
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Figure 6: Number of errors per execution 

 
 
Fig. 6 clearly shows that the errors are more distributed for the vector sorting program than in the case of 
matrix product case. In table 2 it can be seen that most of the injected faults had no effect at the sorted vector 
level. In fact, since the vector sorting program uses less memory locations than the matrix product program, 
the fault injection in the vector sorting experiment provides a lower error rate. 
 

III. C.E.U  injection approach  
 
A) Principle 
 
For processor-based architectures, bit flip injection can be performed at system level using an existing 
hardware architecture including the circuit to be tested (commercially available emulator boards for instance) 
or a specific hardware (dedicated testers). The main idea is here the injection of faults as the consequence of 
the execution of suitable pieces activated at desired instants by an interrupt-like signal (available in most of 
the processor-based architectures). Such a technique, so-called CEU (Code Emulating an Upset) injection 
and proposed initially in [10], has been applied to various processors devoted to space applications. It 
efficiency was proved for different circuits by comparing radiation data and CEU based predictions [11]. In 
the following the C.E.U injection technique is briefly presented, details of its implementation to complex 
processors can be found in [11].  
 
Three steps are needed to set up a C.E.U injection experiment for a given processor: 
- the first step concerns the identification of bit flip targets, called CEU targets in the following, which is 
accomplished through the identification of those memory elements (registers, internal memories, etc...) of the 
processor which are accessible (read or write operation) via the instruction set. It defines the sensitive area 
where upsets can be injected through the CEU mechanism. 
- the second step consists in determining an instruction sequence, called CEU code, whose execution allows 
the inversion of the content of a selected bit for each of the CEU targets. In fact, the CEU targets are 
classified into families according to the type of associated CEU code, which is composed, in the simplest 
case, of a single instructions performing the XOR between the target content and a suitable mask, followed 
by a return from interrupt instruction. 
- the last step requires the development of an external program, for the automated hardware/software 
monitoring of fault injection experiments. Indeed, to accomplish the injection of bit flips, randomly in time 
and location, needs an external hardware to trigger the interrupt procedure, automate the memory loading 
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with data corresponding to the desired CEU code, and to compare the outputs to expected results and 
monitor the application program execution time to detect possible sequencing faults (sequence losses) 
resulting from injected upset. 
 
The architecture of a dedicated test system, called THESIC (Testbed for Harsh Environment Studies on 
Integrated Circuit) developed at TIMA laboratory as a generic platform for radiation ground testing purposes 
[12], offered an attractive infrastructure for the CEU approach and was used to implement all the needed 
mechanisms. 
 

B) Performing CEU injection experiments on a 8051 micro controller 

 
The CEU injection approach was used to derive the error rates of benchmark programs. The CEU targets of 
the chosen micro controller are: the 128 bytes of internal RAM, the Special Function Registers (SFRs), the 
Program Counter and general purpose registers. It must be noted the existence in the 8051 architecture, of a 
few memory elements potentially sensitive to upsets (UAL registers, control part flip-flops, latch registers, 
etc…) which cannot be affected by the CEU injection approach. The amount of these inaccessible targets 
was estimated as being 7% of the whole bit flip sensitive area.  
Details about the determination of CEU codes for each of the CEU targets as well as the analysis of 
particular cases obtained from CEU injection experiments can be found in [13]. We limit here to report the 
results obtained for the two mentioned benchmark programs, in order to compare the two approaches studied 
in this work. 
 Various automatic experiments were performed during which thousands of bit flips were injected, randomly 
in both time occurrence and location, concurrently with execution of the studied programs. These 
experiments aimed at quantifying the rate of “effective” upsets for the tested programs, in order to derive 
realistic figures for the expected error rate in the final environments. 
Results given in the Table 3 following the same classification than in preceding section were obtained using 
pseudo-random CEU injection sessions, by running the matrix multiplication and the bubble-sort vector 
programs. 
 

Table 3: Results of CEU injection for two benchmark programs 
 

                        Matrix  
   Multiplication 

Bubble-Sort 
Vector 

Injected Faults 12245 15632 
Tolerated Errors 6117 11792 
Results Errors 5784 3484 
Sequence Loss 344 356 
Error Rate (%) 50,04 % 24,56 % 

 
 
As in the case of fault injection performed using VHDL descriptions, in order to provide the worst-case 
conditions in terms of exposing the circuit to the effects of SEUs, the 6×6 matrix multiplication program was 
designed in such a way both the operand and result matrixes are stored within the internal SRAM, occupying 
most of this memory. Thus, only 20 bytes (10 SFRs and 10 bytes of it internal memory) were not used. Note 
that in this case, practically half of the total number of injected faults caused errors on the results, while only 
2,8% of them caused sequence loss. This last case was mainly observed when injecting bit flips in PC 
counter. 
 
Results of CEU injection experiments performed on the vector sort program, gave an error rate 
approximately the half than the one obtained for matrix multiplication program. This lower sensitivity was 
expected for this program, as it only uses 30 bytes of the internal memory that corresponds to around 24% of 
the all internal memory (while 77% of it was used for matrix multiplication application).  
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IV. Using fault injection result to predict error rates 

A) Radiation ground testing set up 
Radiation testing experiments, in which the 80C51 processor was exposed to beams of several heavy-ion 
species, were performed the CYCLONE cyclotron available at the UCL (Université Catholique de Louvain-
la-Neuve, Belgium). Further details about the Cyclone facility and the main characteristics of the heavy ions, 
to which the studied processor was exposed are provided in [14].  

As an illustration of a typical experimental set-up used while performing such kind of testing, in fig. 7 is 
depicted a photo of THESIC tester within the vacuum chamber of CYCLONE cyclotron devoted to heavy 
ion radiation testing.  
 

 
 

Figure 7: The 8051 hardware set-up for radiation ground testing in the CYCLONE vacuum chamber 
 
These experiments of ground testing allowed measuring the static SEU cross-section of 8051 micro 
controller by executing a memory-like test pattern (static strategy) while exposing the circuit to the heavy ion 
beams. Such an experiment provides statistical evaluations of the number of particles needed to flip a bit of a 
given memory element. The resulting cross-section curve gives for each of used particle species (identified 
by the energy they deposit in Silicon measured by the LET or Linear Energy Transfer) the number of 
detected bit flips normalized by the number of hitting particles (eq. 1). 

σSEU= # detected errors / particle fluency   (eq. 1) 

Measured cross-section curve for the 8051 is depicted in fig. 8. 
 

 
Figure 8: Static cross-section obtained for the 8051 micro controller 
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B) Predicting program error rates from fault injection experiments 

 

In [12] was presented an approach to predict error rate for an application while executing a given program 
under radiation, based on fault injection results and a limited radiation ground testing. The idea is to measure 
the bit flip sensitivity of the DUT memory elements by execution of a static test under radiation. From the 
derived cross-section, is known a probabilistic estimation of the number of particles needed to get a bit flip 
on a particular target. From fault injection experiments presented in sections II and III,  it can be estimated 

CEUτ  which is the program error rate give as the number of injected bit flips leading to error in the execution 

of a given program normalized by the total number of injected errors (eq. 1).  

 
τCEU= # detected errors / # injected errors   (eq. 2) 

The sensitivity to SEU of the program can be calculated by the product of the cross-section by the error rate 
to CEU: 

CEUSEUSEU τστ *=    (eq. 3) 

Indeed, multiplying the static cross-section by the error rate derived from fault injection constitutes an 
estimator of the rate of detected errors normalized by the number of particles, which is the definition of the 
error rate under radiation for a given application. In this way, once the SEU static cross-section is measured 
from a suitable radiation ground testing experiment, the evaluation of error rates for different application 
programs can be done without exposing the circuits to radiation, significantly saving time and economic 
efforts. 
 
In the case of the circuit and programs evaluated in this study, the error rates obtained by the two fault 
injection methods are very close, the resulting predictions for program error rate will thus be also very 
similar. In table 4 are summarized the error rate factors derived for the two programs. Indeed, to get the 
estimated error rate for a particular heavy ion, this figures should be multiplied by the corresponding cross-
section measure, reducing in our case the difference to a few percents. 
 

Table 4: Error rates factors obtained by fault injection for the two benchmark programs 
 

 CEU Injection VHDL Injection 
Matrix Multiplication 48,8% 48,71% 
Vector Sorting 26 % 22,14% 

 
Aiming at comparing the validity of prediction based on fault injection sessions radiation ground testing 
were performed with the UCL cyclotron. Owing to the cyclotron facility planning constraints, we could only 
expose to radiation the 8051 while executing the matrix multiplication From the formula 2 and the 
underlying SEU cross-sections, the error rates of the matrix multiplication program have been estimated. In 
fig. 9 are depicted curves corresponding to both the measured and predicted error rates. Notice that owing to 
the fact that the vertical axis is a logarithmic one, no differences are visible for the two prediction curves, 
only one being thus represented. The comparison of predicted and measured error rate curves, put in 
evidence the excellent correlation obtained from the prediction technique based on fault injection. In fact, the 
two curves are practically superposed except for the neon ions (LET =5,85 [MeV/mg/cm²]) where the 
difference is still negligible. These results show clearly the excellent efficiency of this technique to predict 
error rates, at least for the simple studied processor (the 80C51), where bit flips can be injected in a large part 
of internal sensitive zones of this micro controller, corresponding approximately to 93% of the whole 
sensitive area. 
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Fig. 9: Predicted and measured error rates  under different heavy ions for the 80C51 

Exposed Program: a Matrix Multiplication 

 
V. CONCLUSIONS AND FUTURE WORK 
 
Two different techniques for fault injection of bit flips in processor-based architectures were exposed and 
experimented on a 8051 micro controller. The first one is based on behavioral description and uses a 
“saboteur” VHDL process, whose activation concurrently with the simulation of a target program, induces 
the injection of a bit flip in one of the memory elements used by the description. The second one works at the 
hardware system level, injecting faults by means of the execution of particular pieces of code activated 
asynchronously during the execution of the studied program. Both approaches were applied to inject faults 
“on-line” concurrently with the execution of simple benchmark programs. The obtained results were very 
similar, in terms of both the number of injected faults provoking deviation in the program results and the 
type of deviation provoked. This can be explained by the fact that both approaches focused the same memory 
elements target set: the internal registers and memory of the 8051. The only difference was the instant of 
fault injection: synchronous with the clock for the behavioral approach and limited to instants of interrupt 
assertion for the CEU injection method. These results prove that this limitation, which could constitute a 
serious obstacle, is not a major drawback for the CEU injection approach, at list for the studied case. 
 
Radiation testing was performed on the 8051 to compute its underlying SEU cross-section and to get 
measures of the error rate of a simple program. Error rates of the 8051 when executing a program under 
radiation were predicted from fault injection experiment results combined with underlying cross–section. 
Prediction and measures were in very good agreement validating both the injection methods and the 
prediction approach. 
 
One of the main advantages of using VHDL based fault injection technique compared to the CEU approach, 
is that being based on a behavioral model of a target circuit, it allows, in principle, to perform fault injection 
in all the targets of bit flips provoked by radiation. Even in the case presented in this work, for which fault 
injection was limited to a subset of memory elements, obtained results were very close to those issued from 
physical fault injection performed by radiation testing. The second advantage relies in the possibility to inject 
faults during each of the clock cycles, simulating in a quite good way the asynchronous occurrence of real 
faults due to particle ionization. Therefore the VHDL injection seems a suitable fault injection technique also 
for characterizing behavioral models of not yet implemented devices. The VHDL technique can also be 
applied, without substantial modifications, to structural models to obtain a wider range of injection targets.  
On the other hand, behavioral fault injection needs the availability of a suitable model of target circuit, which 
is not always the case. In terms of simulation time the VHDL injection is significantly slower compared with 
the CEU injection technique. But this should not be a major drawback considering that fault injection 
sessions can be done in laboratory, and do not need expensive installation like particle accelerators used for 
radiation ground testing.  
 
Future work includes performing the same kind of research on a more complex processor, to study the 
difficulties related with the existence of pipeline blocks and cached memories. 
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