
Self Checking Circuit Optimization by means of
Fault Injection Analysis: A Case Study on Reed

Solomon Decoders
S. Pontarelli†, L. Sterpone‡, G.C. Cardarilli†, M. Re†, M. Sonza Reorda‡, A. Salsano†, M. Violante ‡

†Department of Electronic Engineering
University of Rome ”Tor Vergata”

Rome, ITALY

‡Department of Electronic Engineering
Politecnico di Torino

Turin, ITALY

Abstract— This paper shows how the use of exhaustive fault
injection campaigns in conjunction with the analysis of the
property of a circuit, allows to improve the efficiency of the
checker of self checking circuits. Experimental results coming
from fault injection campaigns on a Reed-Solomon Decoder
demonstrated that by observing the occurred errors and the
correspondent detection module has been possible to reduce the
number of detection module, while paying a small reduction of
the percentage of SEUs that can be detected.

I. INTRODUCTION

Reed-Solomon (RS) codes are widely used for protecting
memories against Single Event Upsets (SEUs) because of its
efficient ability to correct single upsets per coded word with
reduced area and performance overhead. However, a SEU
within the RS decoder can give a wrong data word even if
no errors occurs during the codeword transmission. Therefore,
also the RS decoder must be designed to with fault tolerance
capabilities in order to realize high reliable systems.

When the analysis of SEUs is the major concern,
simulation-based fault injection approaches allow early eval-
uation of the system dependability when only the model is
available. However, considering the large complexity of such
circuitry, a huge amount of CPU time may be required, thus
limiting its usability to exhaustive fault tolerance capabilities
evaluations. Instead, we used a partially reconfiguration based
fault injection technique able to run in a fraction of the time
simulation-based approaches require, supporting the execution
of exhaustive fault injection campaigns.

We performed the fault injection campaign on a Reed-
Solomon Decoder showing how observing the occurred errors
and the correspondent detection module has been possible to
reduce the number of detection modules, while paying a small
reduction of the fault tolerance capabilities.

The paper is organized as follows: in Section II a description
of the fault injection environment is given. In section III the
RS decoder and the additional blocks used to detect faults the
decoder are described, while section IV describes the set-up of
the fault injection campaign and presents the obtained results.
Finally, in section V the conclusions are presented.

II. FAULT INJECTION ENVIRONMENT

The fault injection system we developed is composed by: a
host computer; an FPGA board equipped with a Virtex II-Pro
device, and a serial communication link to the host computer.
The host computer is used for configuring the Virtex-II Pro,
for the generation of a fault location list and to collect the
results in terms of fault-effect classification.

Fig. 1. Architectural scheme of the proposed fault injection approach

The FPGA board is composed of four components intercon-
nected by an On-chip Peripheral Bus (OPB) and its layout is
depicted in Fig. 1.

• Timing Unit (TU): it drives the UUT clock and reset. A
port connected to the OPB Bus defines its functionality.

• Unit Under Test (UUT): it is the circuit under test. Its
input and output ports are connected to the OPB while
the reset and clock signals are connected to the TU.

• ICAP: it is the Internal Configuration Access Port pro-
vided by last generations of Xilinx FPGAs. It allows the
access to all the memory elements (Flip-Flops or Latches)
of the UUT to perform the partial reconfiguration.

• PowerPC microprocessor: it is hardwired in the FPGA
device, performs the fault injection of SEUs in the UUT
and communicates the fault-injection experiment results
to the host computer.

The fault injection execution flow is a two-phase process
composed of a preliminary phase followed by an execution
phase. The flow of the preliminary phase is illustrated in Fig.

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

2. This phase is automatically executed by the host computer
using either internal developed tools and commercial tools
provided by Xilinx. During the preliminary phase the Unit
Under Test is inserted within the FPGA device layout circuit
description. This actions is performed by the UUT Wrapper
Inserting Tool that generates a UUT wrapper inserted within
the FPGA device layout description. This wrapper links the
input and output ports with the OPB Bus and the clock
and reset signals to the Timing Unit. The FPGA bitstream
is obtained following the FPGA implementation tools chain
provided by Xilinx. In particular the BITGEN tool is used to
obtain the bitstream that is loaded within the FPGA config-
uration memory and to generate a Logic Allocation file that
contains a list of all the logic resources used within the FPGA.
The Fault Location List Generator reads the Logic Allocation
file and generates a Fault Location List where each fault
location is characterized by an identifier of the correspondent
flip-flop or latches position in the FPGA.

Fig. 2. Preliminary phase of the fault injection execution flow

The execution phase is executed by the PowerPC and
it consists of three parts: pre-running, campaign and fault
injection results. At first, it loads within the PowerPC memory
the test patterns that will be applied and initializes the UUT.
Secondly, it performs a golden run of the UUT storing the
Golden Output (GO) produced. The Campaign performs the
fault injection of the selected number of faults (NF). The
following steps are executed for the injection of each SEU:

1) The UUT is reseted.
2) A fault injection time (FT) and a fault location (FL) are

randomly selected.
3) The execution of the UUT is started until reached

the clock cycle FT. This operation is performed by
configuring a Timing Unit’s counter at the FT value.

4) The fault location FL is read. This procedure reads
directly the content of the flip-flop or latches from the
configuration memory using the ICAP port.

5) The FPGA is partially reconfigured writing the opposite
value within the content of the flip-flop or latches
identified by FL. Therefore a SEU is injected in the
considered fault location.

6) The execution of the UUT is continued until the end
of the run. During the execution, it monitors the UUT
output ports and comparing their value with the UUT
golden outputs. It finally updates a fault classification

list (FCL) with the results obtained by the fault injection
and classifying each injected SEU as silent, if the output
produced by the UUT are equal to the GO; wrong
answer, if a mismatch was detected.

III. DETECTION OF FAULTS IN THE RS DECODER

An RS(n,k) code [2] is defined by representing the data
symbols as elements of the Galois Field GF(2m) and the over-
all data word is treated as a polynomial d(x) with coefficient
in GF(2m). The Reed-Solomon codeword is then generated by
using the generator polynomial g(x). All valid codewords are
exactly divisible by g(x). The general form of g(x) is:

g(x) = (x + αi)(x + αi+1) . . . (x + αi+2t) (1)

where 2t = n − k and α is a primitive element of the field.
Therefore the codeword is a polynomial c(x) of degree n− 1
such as c(x) mod g(x) = 0 The RS decoder is able to correct
up to t errors in a received word providing as output the
corrected codeword. Two main properties can be defined for
a fault free RS decoder [3]:

Property 1: The decoder output is always a codeword.

Property 2: The Hamming distance between the received
word and the output codeword is not greater than t.

Where the Hamming distance of two polynomials a(x) and
b(x) of degree n is the number of coefficients of the same
degree that are different. When the fault inside the decoder is
activated, i.e. the output is different from the correct one due
to the presence of the fault, two cases occur:

1) The decoder gives as output a non codeword, and this
case can be detected by property 1.

2) If the output of the faulty decoder is a wrong codeword
the detection of this fault is easily performed by evalu-
ating the Hamming weight of the error polynomial e(x).

The error polynomial can be provided by the decoder as
an additional output or can be evaluated by comparing the
received polynomial and the provided output c(x).

This approach is completely independent by the assumed
fault set and it is based only on the assumption that the fault
free behavior of the decoder provides always a codeword as
output. To check if properties 1 and 2 are respected some
blocks can be added to the decoder. They are:

• An optional error polynomial recovery block (the shaded
block in Fig. 3). This block is needed if the decoder do
not provides at the output the error polynomial.

• Hamming weight counter, that checks the Hamming
distance between the received word and the output word
of the RS decoder.

• Codeword checker, that checks if the output data of the
RS decoder form a correct codeword.

A schema of the RS decoder with the additional blocks is
presented in Fig. 3.

The codeword checker block checks if c(x) is exactly
divisible for the generator polynomial g(x). The syndrome

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

Fig. 3. Scheme of the self-checking RS decoder

calculation performs the evaluation of the received polynomial
c(x) for the values of x that are roots of g(x). The received
polynomial is a codeword if and only if all the computed
syndromes are zero. Fig. 4 shows the implementation of the
syndrome calculation block.

Fig. 4. Syndrome calculation block

These blocks allow to detect a fault inside the RS decoder
without any knowledge on the implementation details of
the decoder. However, is possible that some of the blocks
presented in this section are not really needed for a certain
implementation of the decoder. The fault injection experiments
of the following section allows to identify which errors can
occurs on the decoder output when a fault occurs inside it and
therefore which blocks are really needed for fault detection.

IV. FAULT INJECTION EXPERIMENTS

To perform the fault injection campaign an RS(255,239)
decoder with the additional blocks described in the previous
section has been implemented. The syndrome calculation
block is composed by 16 elementary blocks described in
Fig. 4. For the fault injection campaign we call this vector
S = S0...S15. When a fault inside the decoder is activated and
property 1 is not respected albeit one byte of the syndrome
vector is different from zero. The fault injection campaign has
been performed injecting in two runs.

During the first run of the fault injection experiment
1,000,000 SEU are injected and the outputs of the syndrome
computation block has been monitored. Monitoring these out-
puts, we are able to identify if the fault is activated and if the
erroneous output produced by the decoder violates properties
1 or 2. If all the bytes of the syndrome vectors are equal
to zero, then the erroneous output violates property 2, else
it violates property one. The results achieved from the fault
injection campaign report that the number of activated faults
is 6,873,492 and the number of faults detected by the RS
decoder is 6,873,310 which results in a fault detection of about
99.9974%. This implies that excluding the Hamming counter
from the scheme of the self-checking RS decoder shown in
Fig. 3 however we obtain a fault detection coverage of the RS
decoder that is about 99.9974%.

In the second run 100,000 SEU are injected and the 16
bytes of the syndrome vector has been monitored to check

which bytes are able to detect an activated fault. The aim of
these run is to find a subset of the syndrome elements that
detect a high percentage of fault. The overall activated faults
was 98174 and the fault detected by any single element of the
syndrome vector S are reported in table I. The S1 element
of the syndrome vector detects most of the SEUs provoking
faults. Therefore use only the block computing S1 the system
is able to detect 92% of the activated fault. Instead, using the
subset composed only by S1 and S3 we are able to detect
all the activated SEU faults. The fault injection experiments
show that excluding the Hamming Distance Counter Block and
using only the blocks computing S1 and S3 in the codeword
Checker we are able to detect about 99.9974 % percentage
of faults. In this case we save the logic resources needed
to implement the Hamming Distance Counter Block and 14
syndrome element computation block. Instead, using also the
Hamming Distance Counter Block we are able to cope 100%.

Syndrome Detected Syndrome Detected
Element SEUs [%] Element SEUs [%]

S0 7825 8 S1 90186 92
S2 41783 42 S3 84994 86
S4 27550 28 S5 12145 12
S6 42177 42 S7 2114 2
S8 1134 1 S9 3811 4
S10 37268 38 S11 981 1
S12 6534 6 S13 719 0.7
S14 289 0.3 S15 119 0.1

TABLE I
FAULT COVERAGE OF THE SYNDROME VECTOR ELEMENTS

V. CONCLUSIONS

The result presented here shown how some blocks added to
the Reed Solomon decoder due to high level considerations
about the decoder functionality are not really necessary to
obtain an high fault detection coverage. The Hamming Counter
block can be excluded from the self-checking scheme with
a very small reduction of the fault tolerance capabilities.
Moreover, a detailed analysis of the syndrome vector outputs
allows to reduce also the blocks computing the syndrome only
to a small subset, without penalty in terms of percentage of
detected faults. This methodology to improve the efficiency of
self-checking structures is possible only if an extensive fault
injection campaign can be performed in a fast and flexible
environment. The fault injection technique used in this paper
is a good candidate for this task, because is able to perform
injection campaigns in a fraction of the time simulation-based
approaches require.

REFERENCES

[1] G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S. Pontarelli, M. Re,
A. Salsano, “Design of a fault tolerant solide state mass memory”, IEEE
Transactions on Reliability, Vol. 52, Issue 4, Dec. 2004, pp. 476 - 491

[2] R.E. Blahut, “Theory and Practice of Error Control Codes”, Addison-
Wesley Publishing Company, 1983

[3] G.C. Cardarilli, S. Pontarelli , M. Re, A. Salsano, ”A Self Checking Reed
Solomon Encoder: Design and Analysis”, IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, October 2005.

[4] Hyunman Chang; Myung H. Sunwoo, “A low complexity Reed-Solomon
architecture using the Euclid’s algorithm” Circuits and Systems, 1999.
ISCAS ’99. Proceedings of the 1999 IEEE International Symposium on
Volume 1, 30 May-2 June 1999 Page(s):513 - 516 vol.1

13th IEEE International On-Line Testing Symposium (IOLTS 2007)
0-7695-2918-6/07 $25.00 © 2007

