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Abstract— In this paper, an innovative self-checking Reed
Solomon encoder architecture is described. The presented ar-
chitecture exploits some properties of the arithmetic operations
in GF(2s) related to the parity of the binary representation of the
field elements. Moreover, a method for introducing self-checking
capabilities on all the arithmetic structures used in the Reed
Solomon encoder is presented. Finally the self-checking encoder
architecture has been mapped on a FPGA evaluating its area
overhead.

I. SUMMARY AND CONCLUSIONS

High reliability data transmission and storage systems fre-
quently make use of Error Correction Codes (ECC) to protect
the data. The coder and decoder blocks are critical for the
design of high reliable system, in fact any error in this circuits
may introduce catastrophic effects on the overall system. A
fault in the encoder can produce an uncorrect codeword, while
a fault in the decoder circuit can give a wrong data word even
if no errors occurs during the transmission of the codeword.
Moreover these errors will be present in each data flowing in
the system. Therefore great attention must be paid in order to
detect and recover faults in encoding and decoding circuitry.
Nowadays, one of the most used error correcting code class
is the Reed-Solomon one. It is based on the properties of the
finite field arithmetic. In this paper, the property of finite fields
arithmetic will be exploited to detect faults occurring in the
coders, achieving the self-checking property in the arithmetic
structures used in the design of the Reed Solomon encoder.
The coder has been implemented on a Xilinx FPGA and the
area overhead has been evaluated showing that the overhead is
about 50% independently from the number of check symbols
used in the code.

The paper is organized as follows: Section II describes
the properties of the arithmetic structures used in the Reed
Solomon encoders with respect to the parity of the arithmetic
operands. In Section III the architecture of the proposed self-
checking Reed Solomon encoder is presented while in Section
IV some area overhead evaluations are provided.

II. PARITY OF ARITHMETIC STRUCTURES IN GF(2s)

In this section the characteristics of the arithmetic operations
in GF(2s) used in the Reed Solomon encoder will be analyzed
with respect to the parity of the binary representation of the
operands. Two operations will be analyzed:

• Parity of adders in GF(2s)
• Parity of constant multipliers in GF(2s)
First of all we define the parity P(a(x)) of a symbol as the

XOR of the bits ai composing the symbol. For GF(2s) the

addition operation can be implemented simply xoring the bits
of the same index, therefore the following property can be
easily demonstrated:

P (a(x) + b(x)) = P (a(x)) ⊕ P (b(x)) (1)

For multipliers in GF(2s) we focus our attention only on
the multiplication by a constant symbol g, because in the
Reed Solomon encoder the irreducible polynomial used to
encode the data is constant and the polynomial multiplication
can be implemented starting from the multiplication for the
constant gi, where gi are the coefficients of the irreducible
generator polynomial g(x). In this case the multiplier can be
implemented by using a suitable network of XOR gates. As an
example Fig. 1 shows the network implementing the two LSb
of a multiplication by constant g equal to 1010 over GF(24)

Fig. 1. GF(24) multiplier for g=1010

Therefore, each bit of the result of the constant multiplier
can be computed by xoring some input bits depending from the
constant gi and from the chosen g(x) irreducible polynomial.

It must be noticed that, if an input ai is evaluated for an odd
number of output bits, the parity P(c(x)) of the result depend
from the parity of the inputs bits. In other words, the parity
of the result can be evaluated as:

P (c) =
⊕

i∈A

ai (2)

where A is the set of inputs that are evaluated an odd
number of times. In this paper we propose to modify the
constant multiplier block reporting as additional outputs the
inputs bits that are evaluated an even number of times. The
proposed modification can be explained using the concept of
odd observability proposed in [3]. In this way, the parity of
the output word o is:

P (o) = P (c) ⊕ P (copy) = P (a) (3)
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III. THE SELF CHECKING REED SOLOMON ENCODER

The implementation of a Reed Solomon encoder is usually
realized through an LFSR, which implements the polynomial
division over the finite field [4]. The RS encoder is composed
by several slice blocks composed by a constant multiplier, an
adder and a register. The number of slices for a RS(n,k) code is
n−k. The self-checking implementation requires the insertion
of some parity prediction blocks and of a parity checker block.
We propose to check the correctness of each slice using the
structure presented in Fig. 2.

Fig. 2. Self-Checking Slice

The parity prediction block is implemented by using equa-
tion (3). It must be noticed that some constraints in the
implementation of the constant multiplier should be added
(see [3],[5]), in order to avoid interferences between different
outputs when a fault occurs. These interferences are due to
the share of intermediate results between different outputs of
the constant multiplier and can be avoided using networks with
fan-out equal to one. This constraint is not a serious drawback
in the FPGA implementation of constant multiplier, since
each output bit is computed by implementing a XOR network
that requires a very limited number of LUTs: depending on
the number N of inputs, the implementation of the constant
multiplier requires in the worst case 3 LUTs for 8 XORs,
one LUT if N less or equal 4 and 2 LUTs if N up to 7. As
an example of this considerations in Table I are reported the
overhead factors introduced for different constant coefficients.

Fig. 3. Self-Checking RS encoder

The predicted parity bit and the output of each slice are
evaluated by the parity checker block as shown in Fig. 3,
and an error indicator signal informs if a difference between

the predicted parity bit and the parity of the slice outputs is
detected.

IV. AREA OVERHEAD EVALUATIONS

The area overhead of the proposed encoder architecture has
been carried out by using a Xilinx Virtex II as the target device.
We used the Galois Field GF(28) with the polynomial i(x) =
x8+x4+x3+x2+1 and the evaluation of the area of the four
constant multipliers used to compute the generator polynomial
g(x) = (x+1)(x+α)(x+α2)(x+α3) = x4 +g3x

3 +g2x
2 +

g1x + g0 that realizes a encoder with n − k = 4 has been
carried out.

In table I the area used for each of the blocks described in
Section III is shown in terms of number of used LUTs. The
adder is implemented by using one LUT for each output, while
the area of the constant multiplier and of the parity prediction
block depends by the coefficient gi. The parity checker is
implemented as a network of XOR gates, and using a LUT to
implement a 4 input XOR, the number of LUTs of the checker
can be evaluated as � (n−k)(s+1)

3 �, where s is the number of
bits of a symbol.

Normal Self-Checking # FF
(# of LUTs) (# of LUTs)

adder 8 8 0
g0 mult 8 8 0
g1 mult 13 16 0
g2 mult 9 10 0
g3 mult 11 14 0
slice* 18 20 8
Parity - 12 0

Checker

TABLE I

AREA USED FOR THE BUILDING BLOCKS

*mean value

By using the results in Table I the area overhead for the
given encoder can be estimated as the ratio between the
implementation of the four slices without constraints and the
four slices without sharing plus the additional logic and the
parity checker. The overhead for the given case is exactly
50%, and it is independent from the number of check symbols
(n−k). In fact, the equation estimating the overhead between
the self-checking implementation and the ones without self-
checking capabilities is:

(n − k) ∗ (6 + 3)
(n − k) ∗ 18

= 50%
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