
A Signed Digit Adder with Error Correction and Graceful Degradation
Capabilities

G.C. Cardarilli, M. Ottavi, S. Pontarelli, M.Re, A. Salsano
{ottavi,pontarelli,salsano}@ing.uniroma2.it

Department of Electronic Engineering
University of Rome “Tor Vergata”

Via Del Politecnico 1 00133 Rome, ITALY

Abstract

This paper proposes a methodology to obtain fault local-
ization and graceful degradation of a self-checking adder
based on signed digit representation. The main idea un-
derlying the paper is to exploit the fact that in signed digit
arithmetic the carry operation is confined to neighbor dig-
its. The usage of a “carry free” adder implies some ad-
vantages in terms of error detection, fault localization and
repair. For the detection standpoint a parity checker can be
easily applied to detect errors caused by faults belonging
to a the considered stuck-at fault set. Regarding the fault
localization the “carry free” property of the adder ensures
the confinement of the error due to a permanent fault only
to few digits. Finally, if a fault is correctly localized, the
faulty digit can be excluded and the logic which computes
the other digits can be used to perform the adder operation
with a reduced dynamic range.

1 Introduction

The wide diffusion of electronic systems in everyday
life which has been called “ubiquitous computing” strongly
relies on microcontrollers. Thus the design of these cir-
cuits oriented to on-line error detection and correction has a
strong impact on the reliability of many applications and
represents an important research topic. On a functional
standpoint, microcontrollers can be split into two parts:
data path and control path. The control path schedules
the operations to be performed following the given pro-
gram while the control path is composed of the arithmetic
circuits which perform the actual computations. The data
path of microcontrollers always includes adders, in existing
literature are widely proposed self-checking adders imple-
mentations, based on residue codes as for example in [1]
or on parity codes as in [2],[3],[4], Berger codes [12], or

on carry free implementations as [5],[6]. The self-checking
capabilities of adders with carry free implementations are
widely known, while there are not many works proposing
adders which provide also error correction capabilities. The
most widely applied techniques to obtain error correction in
adder circuits are based on time-redundancy [7] or on the
residue number system representation [8], [9]. The goal of
this paper is to introduce novel fault localization and grace-
ful degradation methodology to be applied to a self check-
ing adder [10] which uses the signed digit representation
[11]. The main idea is that in signed digit representation the
carry propagation is limited only to the neighbor digits and
this allows to set up a procedure to locate the faulty digits by
means of ad hoc algorithms to be implemented in the con-
trol path of the microcontroller. Moreover the locality of the
carry propagation also allows to perform some extra opera-
tions in order to repair the adder to some extent by reducing
its dynamic range and accepting its graceful degradation.

The paper is organized as follows: in Section 2 an
overview of the characteristics of signed digit circuits is re-
ported, while in Section 3 the procedure to obtain fault lo-
calization is proposed. In Section 4 is carried out a discus-
sion on the different cases of fault localization reporting the
proposed algorithm and showing possible graceful degrada-
tion approaches. Finally, in Section 5, the conclusions are
drawn.

2 Background

In this section the basic theory of Signed Digit Rep-
resentation is reported together with the description of a
self-checking adder architecture. Given a number x ∈
[−(2n − 1), (2n − 1)] it can be represented in Signed Digit
representation as shown in the following:

x = xn−12n−1 + xn−22n−2 + . . . + x0 (1)

Where xi ∈ {−1, 0, 1}, (i = 0, . . . n − 1).

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

This representation allows to use an architecture like de-
scribed in figure 1 to implement a carry-free adder.

Figure 1. Adder based on Signed Digit Arith-
metic

The main elements of the adder are the blocks ADD1
and ADD2 which perform the following operations.

ADD1: This block has four inputs (ai, bi, ai−1, bi−1)
and two outputs (ci, wi) and performs two different oper-
ations depending on the absolute values of the operands ai

and bi.

• when abs(ai) = abs(bi) then wi = 0 and ci = (ai +
bi)div2

• when abs(ai) �= abs(bi) then if (ai + bi) and (ai−1 +
bi−1) have the same sign then wi = −(ai + bi) and
ci = (ai + bi) otherwise wi = (ai + bi) and ci = 0

The function implemented by the ADD1 block is summa-
rized in Table 1.

Addends Digits Sign Info on Carry Sum
Position i Digits i − 1 Digit ci Digit wi

-1,-1 Not Used -1 0
-1,0 (ai−1 + bi−1) < 0 -1 1
-1,0 Otherwise 0 -1
0,0 Not Used 0 0
1,-1 Not Used 0 0
1,0 (ai−1 + bi−1) > 0 1 -1
1,0 Otherwise 0 1
1,1 Not Used 1 0

Table 1. ADD1 Functions

ADD2: This block has two inputs (wi, ci−1) and one
output zi and is responsible to perform the following oper-
ation:

zi = wi + ci−1

The function implemented by the ADD2 bock is summa-
rized in Table 2.

wi ci−1 zi

-1 -1 -
-1 0 -1
-1 1 0
0 -1 -1
0 0 0
0 1 1
1 -1 0
1 0 1
1 1 -

Table 2. ADD2 Function

It is always true that 2ci + wi = ai + bi and ci−1 and
wi do not have the same sign, so that zi ∈ {−1, 0, 1}. The
carry propagation is limited to one digit, and therefore the
addition can be done in parallel, as shown in Figure 1.

bit 1 bit 0 xi

0 0 0
0 1 1
1 0 -1
1 1 0

Table 3. Chosen coding

In [10] is shown that the adoption of a the coding re-
ported in table 3 and the use a parity prediction block allows
to implement a self-checking adder based on parity check-
ing. The architecture of the self-checking adder is reported
in figure 2. The main blocks introduced in the self checking
adder are:

1. ”Parity Prediction” block, generates the value of P(c)

2. Error Indicator 1, checks if P (w) = P (a) ⊕ P (b) and
issues an error signal in case of mismatch;

3. Error Indicator 2, checks if P (z) = P (w) ⊕ P (c) and
issues an error signal in case of mismatch;

where P(a), P(b), are the bit-to bit parity of the operands,
P(w) and P(c) are referred to the intermediate values and
P(z) is referred to the final result.

3 Fault localization procedure

In this section are introduced fault localization proce-
dures for the self checking adder when stuck at faults occur
in different parts of it. To improve the clarity of exposition
without loss of generality, we take as example an 8 digit
adder. In the following we will show how the analysis of
the error behavior allows to identify the faulty digit. De-
pending on the fault location different types of errors can

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

Figure 2. Self Checking adder implementation

be considered and the effects on the fault localization will
be shown later. The different effects of the faults cause par-
ity errors and the consequent error indicator signals provide
the information that a fault occurred. When an error is de-
tected on the output the proposed fault localization proce-
dure is started. In order to introduce the fault localization
procedure, some definitions must be provided:

• define A = {a(7), a(6), a(5), a(4), a(3), a(2), a(1), a(0)}
and B = {b(7), b(6), b(5), b(4), b(3), b(2), b(1), b(0)}
the input operands to the adder

• define

Z = {z(8), z(7), z(6), z(5), z(4), z(3), z(2), z(1), z(0)}
the correct output and

Z = {z(8), z(7), z(6), z(5), z(4), z(3), z(2), z(1), z(0)}
the faulty output (i.e. the output when an error indica-
tor signal is active)

• define Right Shifted Inputs (RSI) the new in-
puts given from the the right shift of the
inputs vectors such as the MSB is 0 i.e.
ARS={0, a(7), a(6), a(5), a(4), a(3), a(2), a(1)} and
BRS={0, b(7), b(6), b(5), b(4), b(3), b(2), b(1)} and
Left Shifted Inputs (LSI) the new inputs given from the
the left shift of the inputs vectors such as the LSB is 0
i.e. ALS={a(6), a(5), a(4), a(3), a(2), a(1), a(0), 0}
and BLS={b(6), b(5), b(4), b(3), b(2), b(1), b(0), 0}

• define ZRS , ZLS the correct outputs obtained using the
shifted operands and ZRS ,ZLS the outputs obtained
with the same operands when an error indicator signal
is active

The relations between the original result Z and the
shifted ones (ZLS and ZRS) are shown in Fig. 3.

As can be seen in figure the equality relation between Z
and ZLS is valid for 0 ≤ i ≤ 6 while the same relation is
valid for 2 ≤ i ≤ 8 between Z and ZRS . For the left shifted

Figure 3. relation between Z, ZLS and ZRS

output the equality is not valid for z(7) and z(8) because the
most significant digits (a(7) and b(7)) are lost with the shift
operation. For the right shifted output the equality is not
valid for z(0) and z(1) and z(2) because the less significant
digits (a(0) and b(0)) are lost, and also their possible carry
can be lost.

It must be noted that the shifted inputs can activate again
the error detection or not depending on the occurred fault.
Thus even if the output of the adder is Z the result of the
operation performed on the shifted operands can be ZRS

or ZLS . The effects of four different types of faults are
reported with respect to their effects on the affected dig-
its and/or the error detection signal. As stated before, the
reported procedures are possible because of the carry free
features of the signed digit arithmetic adders. The faults are
divided into four types depending their effects on the output
digits, apart from type 4 fault which affects the checker type
1, 2, and 3 faults affect 1, 2 3 digits respectively as shown
in Fig. 4.

Figure 4. scope of the 3 different types of fault
affecting the digits of the adder

In the following the analysis of the impact of faults on
different parts of the adder is reported.

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

Type 1: stuck-at fault on the ADD2 output or in one
ADD1 output: In this case, the error generated by the fault
can affect only one digit. This error modifies the parity of Z.
The chosen coding described in [10] does not allow that an
error on a single bit modifies the value of the digit from -1
to 1 and vice versa (these two values have the same parity).
Once a parity error is detected the operation is performed
again with the LSI as stated before, two different cases can
be considered:

1. The parity is correct i.e the output is ZLS (CASE A)

2. The parity is wrong i.e the output is ZLS (CASE B)

CASE AIf the error indicator does not signal the occur-
rence of the fault, the new computed value ZLS and the old
wrong value Z have the following relation: for 0 ≤ j ≤ 6
zLS(j + 1) = z(j) = z(j) for any digit that is not affected
by the fault. Instead considering i as the faulty digit we
have zLS(i + 1) = z(i) �= z(i). In this case the above
relation allows both to locate the faulty digit and to cor-
rect the output value. If no difference is found between the
ZLS and Z for 0 ≤ j ≤ 6 then the fault can be localized
in the two more significant digits (z(8), z(7)). In order to
localize and correct these faults the operation is performed
again with RSI inputs. In this case the digits of ZRS and
the digits of Z have the following relation: for 3 ≤ j ≤ 8
zRS(j − 1) = z(j) = z(j) for any digit that is not affected
by the fault. This relation shows that in the worst case, the
deletion of the lowest digit can affect at most the digit with
index 2. Instead, considering i as the faulty digit we have
zRS(i − 1) = z(i) �= z(i). Thus because of the followed
procedure, we can assume that an error must be detected in
the second shift operation (RSI). However, if no difference
is detected again between the shifted digits and the original
ones, the checker is assumed to be faulty as we will show
later in the section dedicated to faults affecting the checker.

In other words the left shift operation allows to check the
digits from 0 to 6 while the right shift allows to check the
uppermost digits which are 7 and 8.

CASE B If the error indicator signals the occurrence of
the fault also in ZLS , then the localization procedure is as
follows. For 0 ≤ j ≤ 6 zLS(j + 1) = z(j) = z(j) =
zLS(j + 1) for any digit that is not affected by the fault.
If the fault affects digit i in the interval (0-6) the following
two error conditions occur:

1. z(i) �= zLS(i + 1) when z(i) �= z(i)

2. z(i − 1) �= zLS(i) when zLS(i) �= zLS(i)

The fault is therefore localized as the first different digit
found performing the comparison between Z and ZLS .
Moreover, the z(i) digit can be corrected using the relation:

z(i) = zLS(i + 1)

due to the fact that with the fault localization procedure i
is for sure the faulty digit and in this fault model only one
digit is affected by the fault. Also in this case, if the faulty
digit is the 7th or 8th, or the fault is localized in the checker,
no difference between Z and ZLS is detected. Using the
same procedure described before, the operation can be per-
formed again with RSI inputs in order to detect if the fault is
affecting the remained digits or if it is affecting the checker.

To explain the exposed procedure we can use the fol-
lowing example, in which the ADD2 block computing the
fourth digit is affected by a fault:

A -55 01̄11̄1̄001
B 97 01111̄1̄1̄1̄
Z 42 00101̄01̄1̄0
Z 50 00101̄11̄1̄0

Table 4. Correct and wrong results with origi-
nal inputs

ALS -110 1̄11̄1̄0010
BLS 194 1111̄1̄1̄1̄0
ZLS 84 0101̄01̄1̄00
ZLS 92 0101̄001̄00

Table 5. correct and wrong results with left
shifted inputs (LSI)

ARS -28 001̄11̄1̄00
BRS 49 001111̄1̄1̄
ZRS 21 000101̄01̄1̄
ZRS 29 00010001̄1̄

Table 6. correct and wrong results with right
shifted inputs (RSI)

The reported example considers that only one digit of
the result is affected by the fault and that the error is present
also in the shifted results. It can be seen that the compari-
son between the z(i) and zLS(i + 1) or between z(i) and
zRS(i − 1) allows to localize the faulty digit and to obtain
its correct value.

Type 2: stuck-at in the ADD1 block or in the LSB of
a digit of one of the two inputs (A, B) : Differently from
the previous case, this fault can affect one or two digits of
Z, depending on the fault location and on the values of the
inputs. Also in this case, the architecture proposed in [10]
is able to detect the fault using the error indicator blocks.
A fault localization procedure similar to the previous one
can be used. In particular, the recomputation with the left

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

shifted inputs (ALS , BLS) can activate again the error de-
tection signal, or not. Thus also Type 2 faults the CASE A
and the CASE B show up.

In the first case (CASE A) the wrong digit can be detected
comparing the ZLS value with the old wrong Z value. It can
be noticed that, also in this case, the faulty i digit is local-
ized as the smaller i index such as zLS(i) �= z(i − 1). The
fault localization procedure can also detect if the fault is of
type 1 or 2. In fact, as seen above, if the fault belongs to
type 1, we obtain the equation zLS(i) �= z(i − 1) only for
one digit. Instead, for a type 2 fault two successive inequal-
ities show up in the comparison of the recomputed result
with the original one. Similarly to the discussion made for
the type 1 faults, the comparison of the result with the one
obtained using the LSI allows to locate faulty digits in the
interval (0-6). Regarding the localization of faults in the
(7,8) positions, the procedure which uses the RSI can be
executed. The correct z(i) and z(i + 1) digits (where i and
i + 1 are the locations of the wrong digits) can be obtained
using the result of the operation performed on the shifted
operands, being this result error free (in this case the error
indicator is assumed not to be activated).

In CASE B both the original result and the recomputed
one with LSI are affected by error thus we deal with Z and
ZLS . In this case we have three inequalities between the re-
sults. The first one which is zLS(i) �= z(i− 1) is caused by
the fault of the digit in position i, being z(i− 1) the correct
output (i.e. z(i− 1) = z(i− 1)) while zLS(i) is the wrong
one. The second inequality zLS(i + 1) �= z(i) is related
to the fault which is supposed to affect both outputs Z and
ZLS . The third and last inequality, zLS(i+2) �= z(i+1) is
caused by the error in z(i+1) being zLS(i+2) not affected
by the fault in the considered carry free adder architecture.
It can be noticed that, as discussed in the previous cases a
similar procedure considering RSI inputs can be applied to
locate the faults affecting the digits (7,8).

Type 3: stuck-at in the the MSB of an input: Also in this
case the fault is detected from the error detection block. Be-
ing the MSB of input digits in position i used from ADD1
blocks in position i and i + 1 , a fault of type 3 can affect
a maximum of three output digits (z(i), z(i + 1), z(i + 2)).
Also with this type of fault the comparison of the Z with
ZLS can give rise to two cases which are related to the num-
ber of detected inequalities. In particular, CASE A is related
to the detection of three inequalities while CASE B accounts
for the presence of four inequalities. The localization pro-
cedure is similar to the above reported one for type 1 and 2
and also, the check of digits in position (7,8) is performed
using the RSI.

Type 4: stuck-at fault in the error indicator block. This
fault does not affect the correctness of the result even if the
self-checking adder in its totality is affected by a fault that
must be detected and localized. The procedure which has

been developed in order to cope with the occurrence of the
other types of faults can also detect this kind of fault. In fact,
if an error is detected by the parity checkers but no inequal-
ity has been observed between the original computed value
and the values obtained with both RSI and LSI then we can
assume that the fault affected the checker itself. Thus the
outputs are correct but the self checking capability has been
lost.

4 Discussion

The above reported analysis allows to implement a sim-
ple microcontroller which uses as data path the self check-
ing ALU based on signed digit arithmetic proposed in [10]
and in the control flow a specific algorithm to obtain fault
localization and error correction.

The algorithm of fault detection, localization and correc-
tion is summarized in the graph reported in Figs. 5 and 6.

Figure 5. alghoritm using ZLS

For clarity of exposition the algorithm does not report
the border cases in which the inequality on the results affect
digit in position 6. In this case the wrong digit could be only
6 (type 1 fault) or 6,7 (type 2) or 6,7,8 (type 3). This case
requires the further diagnosis step which uses the RSIs.

The graceful degradation capabilities of the adder are re-
lated to two main aspects of this algorithm: first of all the
algorithm always allows to detect and localize the fault, in
many cases the correct output can be obtained by accepting
a performance degradation due to the time needed to the
repetition of the operation with LSI and (if needed) RSI as
shown in the figures. Moreover, even in those cases when

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

Figure 6. alghoritm using ZRS

is not possible to obtain the correct output from ZRS and
ZLS , the fault localization allows to use the adder with a
reduced dynamic. In fact assuming that x ∈ {1, 2, 3} faulty
digits are detected a 8 digits adder, it can still be used as a
(8 − x) digits adder applying suitable modifications to the
input vectors A and B. For instance, if the digits {3, 4, 5}
of the adder are faulty, the five digit input vectors starting
from the 8 digits inputs should be set up as follows

• A = {a(4), a(3), a(2), 0, 0, a(2), a(1), a(0)}
• B = {b(4), b(3), b(2), 0, 0, b(2), b(1), b(0)}
While the output with reduced dynamic is:

Z = {z(5), z(4), z(3),−,−,−, z(2), z(1), z(0)}

The above reported example is related to a type 3 fault
in the i = 3 digit. Obviously the digits {0, 2} and {6, 8}
are not affected by the fault, while in order to compute cor-
rectly the z(3) output the digits a(2) and b(2) are repeated
in position 5 to provide the correct carry to the ADD1 block
in position 6.

5 Conclusions

In this paper a methodology to achieve error correction
fault localization and some extent of graceful degradation
of a self checking signed digit adder has been proposed.
The main idea underlying the paper is to exploit the fact
that in signed digit arithmetic the carry operation is con-
fined to neighbor digits. This characteristic has been used

to perform an error propagation analysis and to set up a lo-
calization and correction algorithm to be implemented in
the control flow of a possible microprocessor which imple-
ments signed digit ALU. The proposed algorithm is able
to localize the faulty digit(s) by means of a recomputation
of the error affected outputs with shifted operands. After
the fault localization the proposed algorithm allows to in-
troduce some extent of graceful degradation of the system
intended as the reduction of the performances of the ALU
vs a correct output computation. In fact two procedures are
reported. The first one allows to obtain the correct output by
recomputing the result performing two different shift oper-
ations and using the intersection of the obtained data to re-
cover the correct output. The other introduced procedure
is based on a reduced dynamic approach, which basically
allows to obtain the result in only one step, but with fewer
digits on the output. As a concluding remark, it is impor-
tant to note that no extra hardware overhead has been intro-
duced with respect to the self-checking implementation of
the adder.

References

[1] W. W. Peterson “On checking an adder” I.B.M. J. Res. Develop., vol 2, pp. 166-
168, Apr 1958.

[2] F. F. Sellers, M.-Y Hsiao, and L. W. Bearnson, “Error Detecting Logic for Digital
Computers” New York: McGraw-Hill, 1968.

[3] O. N. Garcia and T. R. N. Rao, “On the method of checking logical operations”,
in Proc. 2nd Annu. Princeton Conf. Information ScienceSystem, 1968, pp. 89-95.

[4] Nicolaidis, M. “Carry checking/parity prediction adders and ALUs” IEEE Trans-
actions on very Large Scale Integration (VLSI) Systems, Volume: 11 Issue: 1 ,
Feb 2003 Page(s): 121 -128

[5] M. A. Thornton, “Signed binary addition circuitry with inherent even parity out-
puts” IEEE Trans. on Computers, vol. 46, pp.811-816, July 1997.

[6] W. J. Townsend, M. A. Thornton, and P. K. Lala, “On-Line Error Detection
in a Carry-Free Adder”, 11th IEEE/ACM International Workshop on Logic &
Synthesis pp. 251-254, New Orleans, LA, June 4-7, 2002

[7] Alderighi, M.; D’Angelo, S.; Metra, C.; Sechi, G.R.; “Achieving fault-tolerance
by shifted and rotated operands in TMR non-diverse ALUs” in Proceedings. IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, 25-27
Oct. 2000 pp. 155-163

[8] Lie-Liang Yang, Hanzo L., “Redundant residue number system based error cor-
rection codes” in Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE
VTS 54th , Volume: 3 , 7-11 Oct. 2001 pp. 1472 - 1476

[9] Krishna, H.; Lin, K.-Y.; Sun, J.-D. “A coding theory approach to error control in
redundant residue number systems. I. Theory and single error correction”, Circuits
and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol.
39, issue 1, Jan. 1992, pp. 8 - 17

[10] Cardarilli, G.C.; Ottavi, M.; Pontarelli, S.; Re, M.; Salsano, A., “Error detection
in signed digit arithmetic circuit with parity checker” Defect and Fault Tolerance
in VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium on ,
3-5 Nov. 2003 pp. 401 - 408,

[11] Avizienis A., “Signed-Digit Number Representations for Fast Parallel Arith-
metic” IRE Trans. Electronic Computers, vol. 10, pp. 389-400, 1961.

[12] J.-C. Lo, S. Thanawastien, T. R. N. Rao, and M. Nicolaidis, “An SFS berger
check prediction ALU and its application to self-checking processors designs”,
IEEE Trans Computer-Aided Design, pp. 525.540, Mar.1992.

Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS’04)
0-7695-2180-0/04 $ 20.00 IEEE

	footer1:

