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Abstract — With the increasing needs for memory testing and repair,
yield evaluation is an essential decision-making factor to define re-
dundancy allocation and testing strategies. In particular, yield eval-
uation can resolve the many issues revolving around cost-ef fective
BIST solutions and purely ATE based techniques to guarantee higher
test transparency. In this document, two different yield ca Iculation
methodologies for SRAM arrays are presented. General yield calcu-
lation formulas for VLSI chips are initially presented. The regular
repetitive structure of a RAM array is considered because it shows
major yield improvements with the introduction of redundan cy. Two
repair yield evaluation formulas for one dimensional redun dant ar-
ray are introduced and compared; the first one is based on Mark ov
modeling, the second one is based on an approximation.
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I. INTRODUCTION

Large productions of chips require monitoring to preserve
the quality of the shipped product. The estimate of the yield
(i.e. the percentage of working chips in a production batch)
is an essential feature to monitor manufacturing as well as to
select proper repair strategies if required.

This is valid for memory. Based on the expected yield, dif-
ferent strategies can be chosen for spare allocation and test pro-
Cess.

For spare allocation, an expected high yield could justify a
small amount of spare rows/columns. To maintain the defect
level of the shipped product at acceptable values, more redun-
dancy may be needed at design level.
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Furthermore, the impact of a yield estimate is essential in
the selection of test and repair processes. Memory testers are
designed by enhancing parallel testing to exploit maximum
throughput with low test time. SRAM ATEs can test up to
128 DUT simultaneously, with test speeds up to 500 MHZ.

However, embedded SRAM and DRAM testing implies ad-
ditional higher costs, due to the increased test time and ATE
performances (for “at speed” testing for example). To lower
test costs, and to allow tester designers to meet different mem-
ories requirements, DFT/BIST and BISR solutions have been
proposed [4] [5] [2] [3]. With the increase in memory size,
efficient solutions are required to maintain acceptable produc-
tion yield [6]. Yield evaluation can also be used for select-
ing the most appropriate testing strategy. When the expected
yield is high, BIST or BISR solutions may be preferred, oth-
erwise more expensive ATE solutions may be chosen. Gener-
ally, the former technique leads to low test transparency, i.e.
the fraction of defects not detected by test is higher. However,
the test/repair cost reduction can justify the use of BISR if an
higher yield is expected.

An expected low yield would require the use of purely ATE
based test and repair techniques. Albeit more expensive, they
can guarantee a lower defect level for the shipped product.

In this paper two different approaches for yield calculation
of SRAM arrays are presented. The first approximated ap-
proach (Method A) is the basis of the CAYA (Compiler-based
Array Yield Analysis) tool, described in [7]. Method B is based
on Markov modeling and used as reference. Both the proposed
approaches characterize the yield of repairable memory arrays
with spare rows only. This condition is typical of manufactured
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TABLE |
FUNCTIONAL FAULTS FOR SRAM ARRAYS

Functional fault
chip kill (ck)
single cell (sc)
horizontal pair (hp)

Description
unrepairable fault
only one faulty cell
two adjacent faulty
cells horizontally

two adjacent faulty
cells vertically

one faulty word line
one faulty data column
(bit lines, DIOs, AlO)

vertical pair (vp)

single word line (row)
single data column (col)

products. The effectiveness and accuracy of the two proposed
yield calculation methods are then compared with respect to
industrial design data of defect. The paper is organized as fol-
lows. Section 2 presents global yield modeling issues. In Sec-
tion 3 the two methods are described. In section 4 both these
methods are compared. Finally in section 5 conclusions are
drawn.

Il. GLOBAL YIELD MODEL

The evaluation of the effects of manufacturing defects D on
a chip is related to the evaluation of the defect distribution and
the critical area A in which they occur. The expected value
of the A product provides ¢\ which represents the mean
value of the probability distribution of the number of defects
(or faults) on the chip. From the layout of a circuit, the crit-
ical area is calculated by critical area extraction tools which
are based on shape expansion or monte-carlo simulation. The
defect density is obtained from the manufacturing line. The
number of faults present in a SRAM can be calculated as fol-
lows. Let A be a (5 x 1) matrix of the average number for each
type of functional faults; let Abea (5% critical area matrix,
Anentry A ; denotes the critical area of functional fault type
j in critical area ¢; let D be a (n x )l defect density matrix
for n defined structural level faults. Using the defect density
matrix (obtained from the manufacturing line), the number of
faults (of different types) is given as

K :(e')c 76&7 }?); 111\ 77&9 71& (1)

whereje . hp,vpwr e arethe functional defect types as
described in Table I, and

A=D @)

Let Ao be the sum of the average numbers of faults of each
type in the SRAM. The critical area method is used to model
the effect of defect size and density on the chip. Short or open
defects are then modeled into functional defect densities. From
the analysis performed on an industrial embedded SRAM, for

Ao as average faults per chip, the values of Table 11 have been
computed.

TABLE Il
FAULT TYPES PERCENTAGES

Chip Kill Fault X =B -a
Single Cell Fault Ase =045 X
Horizontal Pair Fault | 5, =0 -@
Vertical Pair Fault o =0 X
Single Row Fault Ao =05 Ao
Single Column Fault | & =05 -

The evaluation of the effects of D on a chip is related to
the evaluation of defect size distribution and the critical area
A inwhich they occur. The expected value of the & product
provides )\ that is the mean number of faults expected on a
chip. Namely, the value of g represents the mean value of the
probability distribution of the faults present on the chip. The
probability of having k faults on a chip can be approximated
with the discrete Poisson distribution of a random variable X=k

(8] [9].

AP
VC ®3)
Where & is the number of faults on the chip It can be demon-

strated that mean and variance of (3) are both equal to Aq. If the

chip has no redundancy the yield is obviously given by equa-
tion (3) computed for k =0

Y =P{X=p =e P 4)

P{X=}F =

Namely, yield is defined as the probability of having 0 faults
on a chip.
However, it has been noticed from the experimental data that
the mean value of the failures distribution and the variance
do not match A as a Poisson distribution requires [9]. This
has been explained as the effect of a non constant distribution
of defect density A also known as clustering effect. A mixed
Poisson distribution is therefore applied using a gamma distri-
bution as mixing function. The result is modeled with a Polya-
Eggenberger distribution

Tk + 3 20)F ©)
BT(HL + (&)

The mean and the variance of this distribution function are
E(X =% =a and Ve (X) =4 - (1+2) respectively.
Therefore, yield for a non redundant chip is, from equation (5)
calculated in k = 0:

P{X=F =

Y =P{X =} =<1+‘%>_a 6)

called negative binomial yield model. In (6) « represents the
clustering effect of the mean defect density g\ on different
chips, a usual value of o adopted in industry is around 2.
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I11. YIELD ESTIMATION MODELS OF REPAIRABLE
ARRAYS

In this section the description of the two yield estimation
models is reported. In Literature many ways to evaluate the
yield of a redundant chip have been proposed. In particular, the
yield of a redundant RAM array has been widely studied [9] [8]
[11]. In this section two different yield estimation models for
repairable arrays are provided. The models we will compare in
the following are based on two different approaches: the first
one [7] (Method A) is focused on reducing the computational
complexity and makes some approximations while the second
one (Method B) is focused on having more accurate results.

A. Method A

In [9] the concept of fault pattern FP has been introduced.
Given the average g\ failures occurring on a chip, they can be
split into the functional effects they cause, i.e. the value Aq can
be seen as the sum of the possible \; failures of F possible fault
types (withi=1,2,..., F).

Ao = Z Ai (7
it F

A fault pattern is defined as a vector F'P = (i1,i2...,iF)
where iy, is the number of type-k faults. Using the FP the yield
of a repairable chip is therefore the probability of having all
the fixable FP, i.e. if the FP are assumed to be disjoint:

v- ¥

all fida leF,P

Pr{FP;} ®)

In [11] an estimation of the yield is given by means of the
analysis of a finite state Markov chain representing all the pos-
sible chip repair states. The analysis of the yield is made as-
suming to calculate all the possible fault patterns therefore is
an estimation of the yield obtainable with an exhaustive re-
pair algorithm. The approach of method A is composed of two
steps, the first step evaluates the Yield as the sum of the proba-
bilities of all repairable fault patterns on the chip with Poisson
distribution, the second step introduces the clustering effect by
performing the inversion of the result obtained by step one and
using the A into a negative binomial distribution function. Let
A be the sum of the average numbers of faults of each type in
the eSRAM. So,

A=A 4+ +A +d td +& )

Let Y, be the yield of the eSRAM after repairing the mem-
ory using the provided redundancy; repair effectively translates
into a process by which hopefully all faults can be corrected.
Let the number of faults left unrepaired be A, and Y, be the
so-called perfect yield which is the probability that there is no
fault left unrepaired (i.e. the number of faults to be repaired is
A). Hence,

=P =1+A/p ¢ (10)

Stapper provided a yield model for calculating the yield of
a redundant memory after repair [1]; Stapper’s model enumer-
ates the probability of successfully repairing all combinations
of fault types using the provided redundancy. Let Cr denote
the possible combinations of faults. The proposed model also
enumerates the probability of all combinations of faults of dif-
ferent types that can be repaired by the provided redundancy
(Cr denotes such possible combinations). Assume a Poisson
distribution for the faults (no clustering); for k faults of type 1,

67)\" )\fk
Pk = (11)

So,

Y, = P (D ZPSC(i)BI) (j)Phpof P (I)Peoi(m) (12)
£

In equation 12, Y, is the repairable yield for (i+j+k+I+m)
faults of different types. From Y, A is obtained as with in-
version of Y,. = e~ and defined as the number of faults left
unrepaired Finally the yield considering the clustering effect is
obtained as:

Yo=(1+A /@ (13)

B. Method B

A repair process is composed of a series of states in which
the chip passes depending on the number of faults that must
be repaired. This case is like a M out of N reliability problem
in which M elements out of N must work typically modeled
with Markov modeling. Therefore a repair process can also
be modeled by means of a Continuous Time Markov Chain
(CTMC) where states are M = number of spare rows + one
failure state and one good state 1 .

Fig. 1. Markov chain for spare rows case

The rates on the edges are as reported in table I11 where:

iny—i—1
n —1

(14)

i i—1 n.—
np-—-1 n
n -1t p —i—l)

Ny ny —1
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AG,F | 8+

Aa1 NeNrAse + NrApp  + NeNr Anp

Aa2 |

/\l,F nc)\col + )\ck

A12 am-B +r -B +
ne(nr — 1) pp+dw (1 2)

Mz A (1 3)

)\2,F NeAcol + Ack

Ag |a@ —2)d +(r —2)d +
Ne(Mr —2)Anp + Ao (2,3)

i A B0

/\i,F nc)\col + )\ck

Ao+ jam - +km —idd +
Ne(Np — ) App + M (4,4 1)

A @ GirY)

)\M,F nc(nr - Sr))\sc + (nr - Sr))\m +

NeAcol + Ack + (N — $7) Ao +
am —9y e (5.8 +1)
TABLE 111
DEFECT INTENSITIES

The following assumptions have been made:
1. all the transition are slow i.e. the transitions occur with
exponential p.d.f. and the rates(\) are constant
2. the faults are assumed independent and therefore the rates
are summed on each edge
Using these rates the solution of the CTMC is computed as the
solution of the following set of differential equations:

PN =P(M

where P()\ is a vector whose elements are the probabilities of
being in sate (G,1,2,...M,F) and A is called generating matrix
and its elements are the rates of the transitions

i A2
A=| 2 »

(15)

The numerical solution of equation 15 is made by consider-
ing that its solution can be written as:

P\ = P Y
considering A\ < 1 the above equation can be written as:
P(AN =P I - AAN
and therefore in general for any given A
PA+ AN =P - AAN

that can be solved numerically. It has to be noticed that this
approach requires a matrix multiplication for each step. Once

the Yield is calculated as the probability of not being in the fail
state the obtained result is then numerically integrated with the
gamma distribution function in order to obtain the actual yield
including clustering effect. Hence, the performed operation is:

Vo = [ V0N -00 dob ar =
n=large

= ) Y(nAN - g(nAX Xo, AX

n=0

(16)

where g(\ o\ ,% is the gamma probability distribution
function. The gamma probability distribution function is de-

fined as [13]
g(z) =2~V (x) (17)

where v = Fc(b) , U(z) is the step function, b and c are positive

numbers, and I'() is the gamma function defined as :

rb+1) =/ yPe Vdy
0

with b > —1. T() is also called generalized factorial because
T'(b+ 1) = bI'(b) and if b is an integer I'(b + 1) = b! being
I'(1) = 1. Using this definition and assuming for the param-
eters z,,c b the following values: z = A ¢ = & and finally
b = « the following formulation of the gamma distribution
function found in literature [9] is then obtained:

a—le=agA

g e i :)‘8"&7;@1

IV. COMPARISON OF THE YIELD ESTIMATION
METHODS

In this section is provided a comparison between the yield
estimation obtained with the two methods described above.
« Method A: Markov model (step 1) + numerical gamma
function integration (step 2)
« Method B: Fault pattern (step 1) + inversion approximated
solution (step 2)
Both methods are composed of two steps, the first one calcu-
lates the yield assuming to have a Poisson distributed failure
probability and the second step introduces suitable modifica-
tions to the values obtained in the first step in order to take into
account the clustering effect. The above methods have been
compared in both steps by calculating the obtained yield on
different size RAM arrays. In particular the sizes chosen have
been 0.5 Mbit, 1 Mbit, 2 Mbit. For each of these sizes the cases
of 0, 1, 2, 4 and 8 spare rows have been considered.
from the above reported results we can see that the first steps
of the considered methods give close values. Also, the plot
reported in fig 2 shows that the yield values obtained by two
different methods overlap for every value of \.
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TABLE IV
ARRAY S1zE 0.5M (1024 RowsS 512 COLUMNS),A 0.1 STEP 1

Method A Method B Difference
(B-A)
no spare 9.0438208e-01 | 9.0483742e-01 | 4.5534e-04
one row 9.6833027e-01 | 9.6817604e-01 | -1.5423e-04
two rows | 9.7949935e-01 | 9.7944126e-01 | -5.8090e-05
four rows | 9.8017626e-01 | 9.8019469e-01 | 1.8430e-05
eight rows | 9.8017904e-01 | 9.8019867e-01 | 1.9630e-05

TABLE V
ARRAY S1ZE 1M (1024 ROWS 1024 COLUMNS),A 0.2 STEP 1

Method A Method B Difference
(B-A)
no spare 8.1790694e-01 | 8.1873075e-01 | 8.2381e-04
one row 9.3357813e-01 | 9.3335306e-01 | -2.2507e-04
two rows 9.5786854e-01 | 9.5775123e-01 | -1.1731e-04
four rows | 9.6072255e-01 | 9.6075544e-01 | 3.2890e-05
eight rows | 9.6075096e-01 | 9.6078944e-01 | 3.8480e-05

---- Method A
Method B 4

0.8

0.6 -

Yield

0.4

0.2

0.0

0.0 5.0 10.0 15.0

avg defect rate
Fig. 2. Step 1: yield comparison varying A

TABLE VII
ARRAY SIZE 0.5M (1024 ROWS 512 COLUMNS),A 0.1 STEP 2

The results of the outputs of step 2 of both methods are com-
pared in tables (VII VIII IX) . These tables show that com-
puted yields are very close using both methods for the consid-
ered A values. In all considered cases the results obtained with
method B are slightly higher than those obtained with method
A. However, if we consider the plot of the yield comparing
both approaches, we can see that for higher values of lambda
the approach B always underestimates the yield as shown in
figure 3.

V. CONCLUSIONS

In this paper two methods for calculating the yield of re-
pairable RAM arrays have been compared. The analyzed
methods have been chosen to be representative of two different
approaches. Method A is the basis of the CAYA (Compiler-
based Array Yield Analysis) tool described in [7]. It is simple
and its computation is fast but it is based on approximations.
Method B is much more complex and the computation time is

TABLE VI
ARRAY S1ZE 2M (2048 ROWS 1024 COLUMNS),A 0.4 STEP 1

Method A Method B Difference

(B-A)
no spare 9.0702483e-01 | 9.0702948e-01 | 4.6500e-06
one row 9.6750202e-01 | 9.6842654e-01 | 9.2452¢-04
two rows | 9.7916222e-01 | 9.7954620e-01 | 3.8398e-04
four rows | 9.8028259e-01 | 9.8029211e-01 | 9.5200e-06
eight rows | 9.8029552e-01 | 9.8029605e-01 | 5.3000e-07

Method A Method B Difference
(B-A)
no spare 6.6897176e-01 | 6.7032005e-01 | 0.0013
one row 8.5818863e-01 | 8.5800966e-01 | -1.7897e-04
two rows | 9.1130299e-01 | 9.1109901e-01 | -2.0398e-04
four rows | 9.2276958e-01 | 9.2281806e-01 | 4.8480e-05
eight rows | 9.2304236e-01 | 9.2311629¢-01 | 7.3930e-05

higher but the results are accurate. Both methods have been
divided into two steps; the intermediate and final results have
been compared. Results are shown to be very close for values
of low lambda and of memory size coming from manufacturing
lines. For higher lambda values Method A underestimates the
yield even if the results of the first steps are still close. There-
fore the first steps of both computations are mostly equivalent.
To obtain accurate results for higher values of lambda, the sec-
ond step of Method B should be used.
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