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Abstract — Often. in space missions, a large amownt of data from on board
mstrupientation must be stoved in highty reliable mass memories. In this pa-
per the implememation of a protorype of a Solid State Mass Memory (SSMM)
Jor high refiability denanding applications is presented. A description of the
SSMM architecture is given together with an in depth description of the proto-
type. The SSMM las been implemented by using a fast protoiyping methodol-
vgy. By using this technique. a flexible re-programmable tesy bed useful for the
testing of both the comventional and fuwdty (using the fuult-injection approach)
Junctionality of the system has been ubtained.
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I. INTRODUCTION

Frequently, satellite missions must acquire a lot of measure-
ment data from on board instrumentation. The measurements
must be performed in hostile environment, where a high
number of errors is possible, and normally, a large amount of
data must be collected for the transmission 1o the earth station.
For example, data from on board instrumentation used in
scientific experiments, or images coming from meteorological
satcMites (e.g. SAR images) can require a storing capacity of
many GBytes and a large data transfer bandwidth. To satisfy
these requirements, SSMM architectures are used.” They are
characterized by high reliability and high performances in
terms of data (ransfer rate and capacity. In this paper a SSMM
based on Commercial off The Shelf (COTS} components
is described together with its implementation by using fast
prototyping techniques. The paper is organized as follows:
Section Il illustrates the chosen design methodology while
Section [11 shows the SSMM architecture. The description of
the prototype is given in Section IV and the Conclustons are
drawn in Section V.

II. DESIGN METHODOLOGY

The development of electronic systems suitable for space
applications requires particular attention to obtatn satisfactory
levels of reliability being these systems embedded in an hos-
tile environment in which mechanical stresses, ionizing radia-
tions and critical thermal conditions are present. To face these
problems, the typical design approach uses space qualified de-
vices based on special and cxpensive technology processes.
However, space qualified components are often not upgraded
(due to the small market) and less performing (due to techno-
logical reasons). These disadvantages can be faced by using
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COTS components logether with suitable system level design
methodologies in order to match the severe reliability require-
ments of space applications, The SSMM architecture and de-
sign methodology presented in this paper, has been chosen in
order (o deal with the typical Tault set defined for the space
environment, i.e. Single Event Upset (SEU) fauits, caused by
ionizing particles, and stuck-at faults, related to the Total Ton-
izing Dose (TIDY) [3],]4].

Moreover, fault detection and dynamic system recovery
fault telerant techniques have been used for the SSMM design.
These techniques has been chosen for the following reasons:

1. low hardware redundancy and low power consumption
requirements

2. the SSMM can tolerate out-of-order time as it does not
perform time-critical operations.

On line fault detection and reconfiguration techniques
that imply the presence of a MTTR (Mean Time To Repair)
but also low area and power consumption with respect to
traditional NMR (N - Medular Redundancy) design have been
chosen for the final architecture. A number of SpaceWire data
links [5] accesses the memory banks through a cross-point
switch matrix [1]. This solution is convenient with respect to
a bus based architecture in terms of bandwidth, latency and
reconfiguration capability as the failure of a connection does
not compromise the entire connection of the network but only
the access 1o a specific node. Moreover, in order Lo improve
both fault tolerance and memory usage, we implemented a
distributed file system. Most of the file sysiem functions are
hardware based and handled tocally on each memory module.

III. ARCHITECTURE DESCRIPTION

At the top level, the SSMM can be considered as a black box
connected to different satellite apparaluses. A number of bi-
directional serial links are used for high-speed data exchange.
For these links the Spacewire (IEEE 1355 DS-DE) protocol [5]
has been chosen. Each Spacewire link is able to carry informa-
tion (data or commands) at about 100 Mbit/sec over distances
of up to 10 meters. Moreover, the SSMM is connected with a
MIL 1553 Bus. which is widely used in satellite platforms due
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to its physical redundancy (dual twisted pair bus structure) [2].
Two main units compose the SSMM architecture (Fig. 1):
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Fig. 1. SSMM Archilecture

1. The Memory Kernel Unit (MKU) manages the bi-
directional daia-flow between nsers and memory chips
2. The System Control Unit (SCU) manages the memory
resources and provides system level reconfiguration.
The required reliability of the SSMM system is achieved both
by means of architectural redundancies, and by introducing Er-
ror Detection And Correction Codes (EDAC), granting data in-
legrity.
In the following each block of the architecture will be
briefly described.

A. Memory Kernel Unit: general description

As shown in Fig. | the Memory Kernel Unit, is composed
of four functional modules:

1. Independent Memory Array Modules (IMAM)
2. Routing Module (Router)

3. I/O Link Interfaces

4. /O Memory Interfaces.

The memory kernel unit under the SCU control provides
all the resources for the implementation of a file system on the
set of SDRAM modutes. The /O Interfaces are divided into
two groups: /O Link Interfaces and I/O Memory Interfaces.
The 1/0 Memory Interfaces handle the IMAM file system,
allowing basic operations like file read/write, delete, format
etc. The I/O Link Interfaces are the front end of the system,
providing a bi-directional transport of data and messages.
The packet routing control and the dynamic reconfiguration
of the system in case of faults are handled by expleiting the
HW/SW interaction between these interfaces and the SCU,
Once a connection between two interfaces is established, the
data flow control is achieved through full handshake. The
Routing Module is the central switch that interconnects the
users (/O Link Interface} with the memory modules. All VO
Link Interfaces and Memory Interfaces modules are connected
to the SCU through a message bus (Msg_bus) that allows

communicating cither the detection of a fault, or the necessary
messages to operate the packet routing control (Fig. 1). Each
module has been developed using different fault toleram
methodologies, depending on the final reliability requirements
and the functionalitics performed. These choices will be
described in the following subsections.

A.1 Independent Memory Array Module (IMAM)
Each IMAM module is composed of:

« Dynamic Random Access Memory (SDRAM) bank
(composed of several COTS chips or MCMs).

« Control circuitry that interfaces the memory bank to the
other components of the IMAM module

¢ Reed-Solomon (R8) coder-decoder which adds redun-
dancy to the data stored into the SDRAM.

The SDRAM packages are arranged on 4 rows per board
side and each row is composed of 18 packages. Each package
implements a 8 hit symhol. Using both the sides of the
board, we are able to implement either a Reed Solomon (RS)
code [6] with a maximum codeword length of 144 symbols
(2 sides * 4 row = 18 column = 144 SDRAM packages) or a
cede with a minimum codeword lergth of 18 symbols. The
data word length depends on the reliability and data integrity
consirainis. IMAM is able to support either variable data and
codeword word-length.

A.2 Routing Module

The routing system connects the I/0O Memory Interfaces
with the I/O Link Interfaces through a crossbar switch
matrix, An arbiter provides the acknowledge signals to the
I'/O interfaces that send data thyough the crossbar. The main
blocks composing the routing module are:

¢ A crossbar switching matrix
» An access arbiter.

With this interconnection method, multiple parallel con-
nections between users and resources can be established
increasing the overall throughput. Latencies can be reduced
choosing appropriate arbitrating policies. Morcover, the in-
trinsic redundancy of such architecture increases the reliability
of the system. The failure of a connection, due 10 a fault in
an I/O interface or in a switch, implies only a partial loss of
system functionality.

A3 1/O Link Interfaces

The 1/O Link Interfaces provide the transport of data and
messages between users {i.e. data from the on board instru-
mentation or data from the on satellite control unit) and the
memory modules. The structure of the packets exchanged with
the Spacewire interface is the following:

| End Of Packer | Payload | Header |
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The packet header is one byle long and indicates the ID of
the packet while the payload is composed of a variable num-
ber of bytes terminated by the End Of Packet (EOP) marker.
We assume that header values in the range from 1 to 255 in-
dicate that the packet is part of a file whose ID number is the
header value. Header value 0 indicates a special packet con-
taining commands or diagnostic communications sent or te-
ceived from the memory. Thus the file system can handie 255
files and the memory can be controlled and monitored by us-
ing the same links carrying the data. All the interfaces access
the switch matrix in full-duplex mode, and request arbitration
through dedicated links. The internal shared bus Msg_bus in-
terconnects all the 170 interfaces and the micro-controller (o
provide file system management and error detection. A generic
I/O link interlace is composed of two main functional blocks:
the “Data Routing Block™, that handles the data flow, and the
“Interface Controller” block, that connects the interface with
the System Control Unit and provides also local error handling
with the *Error Handler” function.

The main functions of the “Data Routing Block™ are the
following:

« LVDS I/F. This block implements the electrical interface
between the differential signals LVDS (Low Voltage Dif-
ferential Signaling) and Data and Strobe single ended sig-
nals,

o SpaceWire (1355 DS-DE) UF. This interface interprets the
serial signal, implements the Row and the parity control
following the procedures of the SpaceWire protocol, ex-
tracts the clock signal and pushes the extracted data into
the FIFQ in parallel mode. The parallelism of the data is
8 bit + | flag bit to separate a data‘header Loken from an
EOP marker.

« LINK I/F. Represents the core of I/O Link interfaces.
It is composed of a master and a slave. The master
block manages a local table of 255 clements containing
the dynamically reconfigurable output association for
each file. The cntries of the table are writlen by the
SCU through the “Message Handler” block. Ongce the
output association is set the masler negotiales the output
connection with the arbiter.

A4 /O Memory Interfaces

These interfaces handle the file system. Each 1/O Memory
Interface has a local File Allocation Table (FAT) stored in the
controlled memory medule. The partition of the file system
in every module reduces the amount of data that can be lost
in ¢case of an unrecoverable failure in the FAT. In fact, in case
of failure we have only the loss of local stored information.
In order to handle the file system the memory interface
implements the following functions:

¢ Delete function: used o delete a file from the FAT

s Fragmenr function: uscd to add to the FAT the occurrence
of more fragments of the same file

o Read funcrion: used to read a file from the memory

o Write function: used (o write a file in the memory
o Format function: used to set-up the FAT in the initializa-
tion phase.

Each function is implemcnted with a separate block and the
“Operation Handler” inside the Interface Controller performs
the activalion of each function. Mareover, cach functional
block is self-checking and a spare block is used to obtain fault
tolerance. In fact, since the occurrence of a failure on a single
block can be detected, the “Error Handier” inside the Interface
Controller can activale the spare module with a low time over-
head.

Both the “Operation Handler” and the “Error Handler”
communicate with the rest of the SSMM through the mes-
sage handler that is the third block composing the Interface
Controller. Therefore, through the message bus, the SCU can
control the status of each I/O Memory Interface both in case
of normal function and in case of faull occurrence.

B. System Control Unit

The System Control Unit manages the access of the users
and the resources of memory. This module is connected
with the rest of the SSMM system through the internal
communication Bus Msg. Bus, used for the communications
service, and through the selection signal Sel that regulates the
medality of access to the Msg_Bus. This subsystem uses two
8051 micro-controllers that can be connected or isolated from
the system through bypass blocks, Normally only a single
processor is active and connected to the system, while the
other one is in stand-by and electrically isolated.

The active micro-controller accesses 10 a 2k ROM memory,
which contains the exccutable program, and o a {K RAM
memory that is used for the data storage and management.
Data written and rcad from the memory is Hamming coded in
order to face soft errors (SEU) occurrence as bit flips in mem-
ory cells. Moreover, a signature caiculation block controls
the correctness of the operattons performed by the micro-
controller.  This block reads the sequence of the addresses
output by the micro-controller and verifies they are following
a correct sequence. The evaluation of the correct execution
is performed with a specific application of a well-know fault
detection technique called signature analysis [7], [8]. The error
management masks system faults. If a faulty behavior per-
sists, the active micro-controller is substituted by the spare one.

1V. PROTOTYPE SETUP

The development of the prototype of the SSMM was in-
tended 1o obtain a simple but still representative version of the
proposed design. The SSMM prototype is composed of only
two memory modules and two link interfaces. In this manner
all the features of the of SSMM can be tested while reducing
the complexity of the first implementation. Moreover the use
of a fast prototyping methodology, based on re-programmable
FPGAs, allows an incremental hardware testing approach. The
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Fig. 3. Prototype Implementation

functional architecture of the prototype is shown in Fig. 1. This
architecture has been partitioned and mapped on the following
hardware as specified in Tab. I

Subsystem name Board Name

IMAM Memory Board

Routing Module DINI BOARD

System Control Unit DINI BOARD

1/0 Memory Interfaces | DINI BOARD

1/0 Link Interfaces DINI BOARD
TABLE I

SSMM BLOCKS PARTITIONING

The prototype has been tested implementing two emu-
lators of remote terminals accessing 10 1. These emulators
have been implemented on two computers interfaced to
the SSMM through Spacewire links. The overall prototype
setup including the testing clements is shown in Fig. 2. As
can be seen, the hardware blocks implementing the system are:

Two Computers

Two Virtex I Prototyping Boards

. One DN2000k 10 Fast Prototyping Board
. Two PC2AFX Boards

Two Memory Boards

. Four National LVDS47/48EVK Boards.

Y IERENIES

In the following, each of the composing HW blocks will be
described and the partitioning of the design will be shown.
Fig. 3 shows the implemented prototype.

A. Computers

On the two computers has been developed a software
implemeniing both high level functions such as file read, write
and delete and Jow level functions such as single packel send
or receive useful for debug purposes. From the functional
standpoint, the software is composed of two functional parts

Routine name | Routine function

BT Bitmap 10 ASCII file image |
translation and vice versa

GC SSMM commands formatting

INP Translation trom ASCII

data to IEEE 1355 packets
and vice versa

Paralle] port bidirectional
ranagement

INTERFACE

TABLE 11
TEST SOFTWARL DEVELOPED

Mod. Name
Parallel

Mod. Function
Parallel port Handshake
management handles
parallel port half duplex
communication between
PC and FPGA

Data codification

from 8 bit data

of the parallel port

to the 9 bit data of the
SpaceWire IP O

block implementing

the SpaceWire protocol

TABLE 11
LOGIC MODULES IMPLEMENTED ON THE XC2V 3000

ParHandler

SpaceWire

« Formatting of the data to be exchanged with the SSMM
in a special format compatible with the SSMM. Creation
of special packeis to send commands to the SSMM (read,
write delete commands for example).

& Bidirectional interface through the parallel port (in the
next release the USB port will be used)

In Table 11, the list of the implemented routines is reporied

All the developed functional code has been written in C
while GUI has been implemented by using Tel and the Tk
graphic toolkit.

B. PC2AFX Boards

These boards have been developed in order to implement
voltage translation from the TTL levels of the paralle! port to
the LVTTL levels of the HW-AFX Xilinx Board. Two buffers
have been used. A bidirectional buffer is used for the data bus.
A directional buffer for control signals, These boards have
been mounted on the two HW-AFX boards (Fig. 2).

C. Virtex I Prototyping Boards

These Xilinx prototyping boards host a Xilinx Virtex 11
XC2V3000 FPGA, a PROM for the configuration bitstream
and some control logic. They have been used for the imple-
mentation of the SpaceWire protacol and its interface to the
computer parallel port. In Table 1IT the main logic blocks
implemented on the XC2V3000 FPGA are described.
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Fig. 2. Prototype Setup

D. 508 Buffer Board

The input-output signals from the SpaceWire link are four,
Two inputs (data in and strobe in) and two cutputs {data out
and strobe out). These signals are connected to a couple of
boards used to for the conversion from the LVTTL levels to the
LVDS standard levels {see the next section), The LVDS board
are connected to the FPGA board by using a 50 € coaxial
cable. The LVTTL outputs of the FPGA are not able to drive a
50§} transmission line. In order to solve this problem a small
board with a 5012 bufter has been developed.

E. National LVDS 47/48 EVK Boards

These boards have been used for the vollage level trans-
fation ftom ihe single ended LVTTL standard to the LVDS
differential standard adopted in the SpaceWire protocol. The
boards host one two channels differential line driver and one
two channels differential receiver. The inputs to the board are
two SMB female connectors, the input and output differential
pairs are availahle on two RI43 CATS5 conncctors.

Block Name | Block Function
FPGA A SpaceWire Interface |
FPGA B SpaceWire Interface 2
FPGA C Routing Module
/0 Link Interfaces
1/0 Memory Interfaces
FPGA D System Control Unit
TABLE IV

LoGic BLOCKS PARTITION oN DN2000K 10

Block Name | Block Function

MMC memory module controller: handles the
handshake of the data /O
with the rest of the system

(SSMM dynamic router)

EDAC Error Detection And Correction performs
the Reed Solomon coding/decoding of the data
stored in the memory.

MAC Memory Address Controller: handles

the data I/O on the memory
chips performing the
necessary handshaking of control

signals for accessing DRAM arrays.

TABLE V
LoGIC BLOCKS IMPLEMENTED ON THE VIRTEX XCV 1000 DEVICE

F DN2000k10 Fast Protorvping Board

The DN2000k 0 [9] is a very complex board for fast ASIC
prototyping based on six Xilinx Virtex XCVi000-4 FPGAs.
The board hosts 8 Mbyte of Flash memory to memorize the
FPGAs conligurations, canned oscillators and low skew clock
drivers. A very large number of headers both on the top and
bottom of the board allows a simple board interfacing.  As
shown in Table 1 the DN2000k 10 board has been used in order
to map the SSMM core functions, in particular in Table IV the
partition of the design on the FPGAs provided by the board is
shown. The interconnections from the DN2000k10 board and
the memory banks has been implemented by using flat cables.

G. Memory Boards

The Memory Boards are a compound subsystem of the
SSMM. The subsystem is implemented on two boards:
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1. HOST PCB :ad-hoc developed PCB housing SDRAM ar-
rays (4 GB) and a VIRTEX XCV1000 f{ast prolotyping
board.

2. HW-AFX-BG560-100 fast prototyping board housing
a Virtex XCV1000 device implementing the logic of
IMAM handling.

The logic functions implemented on cach VIRTEX
XCV1000 are related 1o the SDRAM control, Reed Solomon
Coding and System Interfacing with the rest of the SSMM. In
Table V the logic blocks are reported and described.

V. CONCLUSIONS

In this paper the fast prototyping based implementation of a
Solid State Mass Memory has been presented. At present, the
measurements on the SSMM are in progress. The basic oper-
ations performed on the prototype are both functional testing,
in order to evaluate the performances of the system, and fault
injection in order 10 test the system in emulated fault occur-
rences.

First resulis show a good behavior of the system, also in
the case of injected faults. We are now testing the effects of
the faults on the SSMM performance, in order to validaie the
behavior of the mechanisms introduced for obtaining graceful
degradation. In particular, due to the complexity of the inter-
actions among the different elements involved in the above
mechanisms, we observe that the use of rapid-prototyping
based implementation, if compared to the simulative analysis,
greatly improves the accuracy of performance estimation of
faulty SSMM.
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