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ABSTRACT
We give a Markov chain model of the yield of an embedded
memory core. The model allows easy inclusion of the effect
of possible defects elsewhere on the chip that includes the
embedded memory. We propose a reconfiguration algorithm
for the case of both spare rows and columns that is simple
enough that it could serve as built-in self-repair on the chip.
Compared to an optimal configuration algorithm, there is
no visible difference in the yield. We use parameters from
an IBM embedded SRAM process to illustrate the yield cal-
culation. We study the effect of different spare allocations.
We conclude that as long as there is at least one spare of
each type, the spares do not need to be balanced, once the
yield impact of being part of a system-on-a-chip has been
taken into account.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Miscellaneous; G.3
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The occurrence of a defect on a critical spot of a chip lay-
out can cause the failure of the whole chip if no redundancy
has been introduced in the design or if the defect’s effects
can’t be repaired with the provided redundancy. The manu-
facture of defect-tolerant VLSI circuits requires an accurate
estimation of the yield because the redundancy introduced
in the design depends on it.

Memories are laid out as two-dimensional arrays with logic
to address the rows and columns. The addressing logic can
be modified to allow additional (spare) rows and/or columns
to be addressed. The area overhead for this is not high,
because the number of rows/columns grows as the square
root of the number of cells. As a result, memories often have
redundancy; however, it is inconvenient to introduce spare
columns, so using spare rows only is desired if feasible.

We evaluate the yield of redundant RAM arrays. A spe-
cific embedded SRAM is used for illustration. In particular,
in Section 2 the global yield model based on a negative bi-
nomial distribution is espoused. To evaluate the yield, we
need to consider a particular repair algorithm; we propose
a new one in Section 3 for memory arrays with both spare
rows and spare columns. In Section 4 we report the critical
area and defect density models that provide λ0, i.e., the ex-
pected number of defects per chip, used for the yield results
reported in Section 5.

2. GLOBAL YIELD MODEL
The evaluation of the effect of defect density, D, on a chip

is related to the evaluation of the defect distribution and the
critical area, A, in which they occur. The product AD = λ0

provides the mean number of defects expected on a chip.
The value of λ0 represents the mean value of the probability
distribution of the defects present on the chip.

However, different wafers have different qualities, so each
wafer will have its own value, λ, instead of λ0. Usually, in
what is called a large-area clustering model, if the value of
λ is known for a wafer, then the chips on it are considered
to be subject to defects that are Poisson distributed [3, 8]

Pr{X = k} =
λk

k!
e−λ (1)
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Here, k is the number of defects on the chip. The mean and
variance of Equation 1 are both equal to λ. If the chip has
no redundancy, the yield is obviously given by Equation 1
computed at k = 0

Y = Pr{X = 0} = e−λ (2)

Namely, yield is defined as the probability of having 0 defects
on a chip.

To determine λ for a wafer, most common is to draw it
from a Gamma distribution. The yield can then be deter-
mined by taking the yield given λ and integrating out λ.
Numerical integration is the simplest. This operation is

Y (λ0, α) =

∫ ∞

0

Y (λ) · g(λ|λ0, α)dλ

≈
large∑
n=0

Y (n∆λ) · g(n∆λ|λ0, α)∆λ (3)

where g(λ|λ0, α) is the Gamma probability distribution func-
tion. The Gamma probability distribution function is de-
fined as [5]

g(λ|λ0, α) =
αα

λα
0 · Γ(α)

λα−1e
−α λ

λ0 (4)

Alternatively, the probability distribution function for the
number of defects on a chip can be taken directly from the
mixture of the Gamma distribution function and the Poisson
distribution function, yielding the negative binomial distri-
bution function

Pr{X = k} =
1

k · Beta(k, α)
·

(
λ0
α

)k

(
1 + λ0

α

)α+k
(5)

The mean and the variance of this distribution are E(X) =
λ0 and Var(X) = λ0

(
1 + λ0

α

)
, respectively. Therefore, yield

for an irredundant chip is, from Equation 5 calculated at
k = 0,

Y = Pr{X = 0} =

(
1 +

λ0

α

)−α

(6)

called the negative binomial yield model. In Equation 6, α
represents the clustering effect of the mean defect density
λ0 due to having a common value for λ on a wafer. A usual
value of α adopted in industry is around 2.

3. PROPOSED REPAIR METHOD
We will analyze yield for memory arrays with both spare

rows and spare columns. The problem of determining whether
such a memory can be repaired is NP-complete. However
an exhaustive solution is computationally feasible when the
number of spares is small. We compared the repair success
rates of our proposed algorithm against an optimal repair
algorithm and found no visible difference in plotted yield.

Our algorithm is simple enough to be implemented in
hardware, so it could be used for built-in self-repair. The
algorithm is based on the premise that as long as a line (row
or column) in the memory array has at most one unrepaired
defective memory cell present, we defer the decision on how
to repair it. As soon as a line has multiple defects, we mark
it for repair. For this reason, we call the algorithm Single
Deferral.

To describe the state of the algorithm after 0 or more
defects have been processed, we track 3 variables:

i number of already repaired rows,

j number of already repaired columns,

k number of not already repaired isolated/independent
defective cells (or flexibility factor).

The defective cells that are independent of all other defective
cells/lines (have no line in common with other unrepaired
defects) can be repaired flexibly, using either a spare row or
a spare column, as available.

When a defect is reported at a single cell, if k = 0, then k
is merely set to 1 and no repair decision is made yet, but the
location is remembered in a list of deferred defects. When
another single cell defect is reported, if it is independent of
the defects on the deferred list, then it is added to the list
and k is incremented. If it is on the same line as a previous
saved value, a spare line is allocated to repair them, and the
prior defect is removed from the deferred list (k decreases).

Similarly, if a line defect is reported in common with a cell
defect on the deferred list, then the cell defect is removed
from the list. Each time a line defect is repaired, or each
time a spare line is allocated to repair multiple cell defects,
i or j is incremented.

Some defects occur affecting pairs of memory cells. If a
memory array uses grouping (spare lines are grouped and
only an entire group can substitute for a defective group),
then these paired defects will have less impact, they will
tend to behave more often like single cell defects. For our
illustrative memory, we let groups be of size 1.

When a paired cell defect (horizontal, HP, or vertical, VP)
is reported, a repair is made according to the following:

• If the fault is isolated (no overlap with previous ones)
the row (for HP) or the column (for VP) is allocated
and k is decremented if the row/column already con-
tained a single unrepaired cell defect.

• If the fault is (horizontally/vertically) overlapping a
previous single cell defect the repair is made as though
it were a single cell defect; if there is also overlap in
the other direction (vertical/horizontal), the choice of
spare row/column usage is random.

When a spare is needed and there are none left unallo-
cated, then the memory reconfiguration fails. If there are sr

spare rows and sc spare columns, then the state (i, j, k) must
satisfy i ≤ sr, j ≤ sc, and i+ j +k ≤ sr + sc. Otherwise, we
should have transitioned to the failed state instead. These
constraints define the boundary conditions for the state di-
agram. However, a typical state not near the boundary has
the outgoing edges depicted in Figure 1.

The intensities of the state transitions in Figure 1 are
given in Table 1, where nr and nc are the number of rows
and columns in the memory array. The intensities do not
add up to λ0, because edges from a state to itself do not
need to be included in the CTMC.

4. CRITICAL AREA
For a wafer with quality dictated by λ, drawn from a

Gamma distribution, the Poisson number of defects must
still be distributed across the wafer. This is done by ran-
domly assigning defects to locations according to the sus-
ceptibility of the various devices on the wafer. The concept
of critical area is used as a metric for susceptibility. Another
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Figure 1: Generic node transitions for the Single Deferral algorithm.

Table 1: Failure Intensities for Single Deferral Algorithm
Defect Type Edge(s) Value(s) Comment
Chip Kill 6 λck In every state

1 (nr − i − k)λrow No other sc on the row
Row 4 kλrow Unrepaired sc on the row

6 (nr − sr)λrow if i = sr boundary
2 (nc − j − k)λcol No other sc on the column

Column 5 kλcol Unrepaired sc on the column
6 (nc − sc)λcol if j = sc boundary
3 (nr − i − k)(nc − j − k)λsc Isolated sc
4 [k(nr − i − 1) − k(k − 1)/2]λsc Unrepaired sc on the row

Single Cell 5 [k(nc − j − 1) − k(k − 1)/2]λsc Unrepaired sc on the column
2 [(nr − i)(nc − j) − k]λsc if i = sr boundary
1 [(nr − i)(nc − j) − k]λsc if j = sc boundary
6 (nr − i − k)(nc − j − k)λsc if i + j + k = sr + sc boundary
1 (nr − i − 2k)(nc − 2j − 2k)λhp Totally isolated
2 2k(nr − i − 2k)λhp Unrepaired sc on the column

Horizontal Pair 3 2j(nr − k − i)λhp Overlap with repaired column
like an isolated sc

4 (2k + k(nc − 2j − 2k) + k2j)λhp 2k=one overlapping
k(nc − 2j − 2k)=no overlap
k2j=overlap with repaired col

1 2k(nc − j − 2k)λvp Unrepaired sc on the row
2 (nc − j − 2k)(nr − 2i − 2k)λvp Totally isolated

Vertical Pair 3 2i(nc − k − j)λvp Overlap with repaired row
like an isolated sc fault

5 (2k + k(nr − 2i − 2k) + k2i)λvp 2k=one overlapping
k(nr − 2i − 2k)=no overlap
k2i=overlap with repaired row

view of critical area is that it is (or is proportional to) the
expected number of defects. When the Poisson process is
applied with the location dictated by the critical area distri-
bution, we have a space-varying Poisson process. To account
for this space-varying process, the only thing we need is to
fill in the details about values for the intensities: λck, λrow,
etc. Since a memory array is quite regular, we assume each
row loss defect (etc.) is equally likely to be any row (etc.).

We used defect rates from an IBM embedded SRAM pro-
cess. To not be too revealing, we only give approximations
of these defect rates and we scale them. Table 2 breaks down
the critical area, λ0, of a half megabit memory. As SRAM
size increases, the expected number of defects of each type
increases in proportion, except for the chip kill defect, which
increases only gradually. Three other rare types of defects
found to exist for this embedded SRAM are not included.

The λ∗ are the observed defects. Generally, there are
actually more defects of each type due to masking by other
defects. For instance, a chip kill defect might involve a short
between power and ground. Due to the short, whatever cell
and other defects were present are not detected.

Table 2: Defect Type Distribution
Defect Variable Relative Frequency

Chip Kill λ∗
ck 0.05 · λ0

Single Cell λ∗
sc 0.45 · λ0

Horizontal Pair λ∗
hp 0.1 · λ0

Vertical Pair λ∗
vp 0.1 · λ0

Single Row λ∗
row 0.15 · λ0

Single Column λ∗
col 0.15 · λ0

When the grid is large, the extent of masking is not much,
except for the impact of chip kill defects. Even so, we used
the approximate equations below to obtain the genuine de-
fect intensities from the observed ones. We use λdefect for
the genuine intensity and λ∗

defect for the observed rate.
In our case, values of λ and λ∗ are close, and the values

in Table 2 are approximations anyway, so we use the same
approximations for λ as are given in Table 2 in our compu-
tations.
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λ∗
ck ≈ 1 − e−λck (7)

λ∗
row ≈ nr(1 − λ∗

ck)[1 − e−λrow ] (8)

λ∗
col ≈ nr(1 − λ∗

ck)[1 − e−λcol ] (9)

λ∗
hp ≈ nrnc(1 − λ∗

ck)e−λrowe−2λcol [1 − e−λhp ] (10)

λ∗
vp ≈ nrnc(1 − λ∗

ck)e−2λrow e−λcol [1 − e−λvp ] (11)

λ∗
sc ≈ nrnc(1 − λ∗

ck)e−λrowe−λcol · (12)

e−2λhpe−2λvp [1 − e−λsc ]

5. YIELD RESULTS
Whether the memory array is successfully repaired de-

pends on the final state, (i, j, k), reached. As long as it
is not a failed state, reconfiguration is successful. We can
introduce

P (t): the probability state vector at time t

which tells us the probability of being in each state at time
t. P (0) is a unit vector with probability 1 of being in state
(0, 0, 0). The amount of time to allow to pass has to be
gauged so that the expected number of defects in the space-
varying Poisson process is the desired amount. In our case,
we want P (λ). Moreover, we want this for all values of λ,
because λ will be drawn from a Gamma distribution with
mean λ0 and clustering parameter α. However, accurate
results do not require us to consider large values for λ.

This technique of determining P (λ), or at least determin-
ing it for a set of λ values, and integrating out λ with the
Gamma distribution relies on using Markov chains such as
the one depicted in Figure 1. These Markov chains assume
the defects “arrive” in a random order, so it is most rele-
vant for repair algorithms that process one defect at a time
and get their defects in random order (or are not harmed
by ordering). This is the same technique as that used in
[4]. Contrast this with the methods of [2, 6], which rely, for
example, on fault trees.

Finite state Markov modeling can be made both in dis-
crete time and continuous time; in the first case we deal
with Discrete Time Markov Chains (DTMC) in the second
case we have Continuous Time Markov Chains (CTMC).
Our CTMC models have an embedded Markov chain [5].

For these yield results we estimated the probability state
vector via numerical integration, as so

P (k∆) ≈ P (0)(I− A∆)k (13)

where A is the state transition matrix [5] corresponding to
the transition rates (intensities) in the Markov model. This
is the numerical approximation to

P (t) = P (0)e−At (14)

Many reliability evaluation tools have been developed to
deal with the numerical solution of this equation, such as
[1]. Our results were obtained using Matlab.

Our simulated memory array has 1024 rows, 512 columns,
and 4 spares. We vary how the spares are allocated. The
clustering parameter, α, is set to 2. The rates of individual
defect types is as in Table 2.

We are interested in what happens when spare columns
are introduced, because it is architecturally inconvenient to
have spare columns in a memory. This is why memories that
use error control codes [7] only use spare rows, even though

they would have slightly superior reconfigurability if they
used spare columns instead.

Figure 2 shows the probability of successfully reconfigur-
ing a memory array when exposed to Poisson defects. The
horizontal axis gives the expected number of defects, λ. The
plot lines show reconfigurability with different numbers of
spares: “2+2” means 2 spare rows and 2 spare columns,
“0+4” means 4 spare rows and no spare columns. We can see
important increases in yield by balancing the spares equally
between rows and columns.
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Figure 2: Reconfigurability with different spare ar-
rangements.

A memory is likely to be embedded, so its effect on yield
is only valid in the context of the entire chip within which it
resides. We need to assign a critical area to the remainder
of the chip. That critical area is likely to be substantially
more than that of a SRAM memory, although a large DRAM
embedded memory might have comparable critical area to
the rest of a system-on-a-chip. We set the critical area of the
remainder of the chip to be 1.00 ∗ λ0 and note the results.
This is adequate to illustrate our point, and the result would
be stronger if the critical area were higher. It is easy to add
this new critical area to our model by adding it to λck.

Figure 3 shows the probability, as a function of λ, of whole
chip survival—i.e., the memory array is successfully repaired
and no defects in the remainder of the chip. We note now
that the introduction of the first spare column (in exchange
for a spare row) has significant benefit, but the introduction
of subsequent columns is harder to justify.

While there is a clear difference between Figures 2 and 3,
we cannot be sure that this difference will translate to dif-
ferences in yield. We need to integrate out λ. The result is
in Figure 4. This time the horizontal axis variable is λ0.
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Figure 3: Reconfigurability and survival of entire
chip.

The plot has an anomaly with low λ0; this is due to the
granularity of the numerical integration. Additional calcu-
lation would need to be done if we were interested in the
part of the curves where λ0 is very low.

The lower set of three plot lines is for the different spare
arrangements for the entire chip; the upper set is for the
embedded memory only. We note that the observation still
holds that, after taking the entire chip into account, we want
at least 1 spare column, but additional ones are of dubious
merit.

6. CONCLUSION
The manufacturing yield of an embedded memory can be

predicted by modeling defects as arriving over time. As de-
fects arrive, the repair algorithm processes them. The deci-
sion diagram for the repair algorithm can be converted to a
continuous time Markov chain. The solution of this Markov
chain is the reconfigurability for a given defect density.

We gave a particular spare allocation algorithm, Single
Deferral, that defers decisions on how to repair single iso-
lated cell defects until a second defect aligned with it occurs.
This algorithm is near optimal and is simple enough to be
implemented in hardware.

The Markov models presume that defects arrive in ran-
dom order. If they do not, it could be possible to take
advantage of this in the repair algorithm. For example, if
built-in self-test sought to detect the line defects prior to
the cell defects, then the line defects would all appear to
“arrive” earlier than the cell defects. This slightly enhances
reconfigurability, because when the less severe defects are
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Figure 4: Yield after integration with Gamma dis-
tribution.

processed, it is already known how the more severe defects
needed to be repaired.
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