
Exploiting Dynamic Reconfiguration for FPGA based Network Intrusion Detection
Systems

Salvatore Pontarelli, Claudio Greco, Enrico Nobile, Simone Teofili, Giuseppe Bianchi
Consorzio Nazionale InterUniversitario per le Telecomunicazioni (CNIT)

University of Rome ”Tor Vergata”, Via del Politecnico 1, 00133, Rome, ITALY

Abstract—A Network Intrusion Detection System (NIDS)
inspects the traffic flowing in a network to detect malicious
content such as spam, viruses, and so on. Hardware based
solutions appear necessary to face the performance require-
ments emerging when the goal is to deploy such systems in
high speed network scenarios. However, the appropriate choice
of the hardware platform is believed to be subject to at least
two requirements, usually considered independent each other:
i) it needs to be reprogrammable, in order to update the
intrusion detection rules each time a new threat arises, and
ii) it must be capable of containing the typically very large set
of rules of existing NIDSs. The goal of this paper is to show
that reprogrammability can be further exploited to reduce the
resource requirements for the chosen platform. Specifically, we
propose an FPGA-based solution that classifies and dispatches
traffic to elastic buffers, connecting one buffer at a time to
a dynamically reconfigurable rule matching core. This core
supports only the appropriate subset of detection rules. A
worst-case analysis shows that the saving in hardware resources
is achieved with a relatively small buffer space, currently
available in cheap, low end, FPGA boards, with no impairment
on the resulting throughput.

I. INTRODUCTION

The demand for network security and protection against
threats and attacks is ever increasing, due to the widespread
diffusion of network connectivity and the higher risks
brought about by a new generation of Internet threats.
Network Intrusion Detection Systems (NIDS) play a key role
in such a scenario. A NIDS is a system that analyzes the
traffic crossing the network, classifies packets according to
header and further inspects payload information with respect
to content-matching rules for detecting the occurrence of
anomalies or attacks.

NIDS deployment has been boosted by the emergence
of open source systems, such as Snort [1]. Its open source
software nature, in conjunction with its flexible rule-based
language and the availability of a very active users’ and de-
velopers’ community, has fostered the deployment of NIDS
systems in network scenarios where cost/benefits trade-offs
might not justify the adoption of commercial, high end,
dedicated systems.

However, the ever increasing deployment of higher link
rates and the ever growing Internet traffic volume appears
to challenge NIDS solutions purely based on software.
Especially, payload inspection (also known as deep packet

inspection) appears to be very demanding in terms of
processing power, and calls for dedicated hardware systems
either devised to implement a specific set of IDS functions
[?], or to act as IDS pre-filter for offloading a remote
software-based IDS [2], [3]. The approach presented in
[2], [3] combines the flexibility of IDS software and the
processing power of a hardware implementation. These
systems perform a first processing of the packet traveling
into the network and, if a suspicious string has been found,
the packet is forwarded to a PC running a software based
NIDS. In this way only a little fraction of the traffic is
analyzed by the software allowing using these systems also
in networks with high data rates. The hardware IDS, instead,
implements only a simplified version of the rules that must
be checked. The simplified rule version is used to identify
only the small subset of the whole traffic that potentially can
carry the complete rule.

Any attempt to foster a smooth and viable migration
towards hardware-based solutions, meanwhile retaining the
success and easy of adoption of software based ones, must
challenge at least two specific requirements.

First, envisioned hardware-based NIDS solutions must be
extremely flexible in their support of new emerging rules
devised to handle new threats or attacks. This does not
seem to be a particularly challenging requirement, in sight
of the availability of FPGA-based systems, which intrinsic
reconfiguration ability allows to update the inspected rule
set by simply upgrading the FPGA bitstream.

Second, hardware-based NIDS systems must be operated
on low cost widely deployed commodity platforms. How-
ever, the large number of rules (see section II) that must be
implemented in hardware sets forth tight requirements on
the amount of logic resources. Resorting to ”more capable”
FPGA boards is not free of concerns, not only because
of cost reasons (high end FPGA boards are probably still
well affordable in most practical deployment scenarios), but
rather for critical mass reasons. For instance, the majority of
the networking research community appears having adopted
a specific board, namely, NetFPGA [4], for development
purposes, in sight of the large amount of network-specific
pre-developed functionalities, the abundant documented use-
cases, the frequently dedicated events, and, most important,
the large user community base. But, the limited resources

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.13

10

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.13

10

2010 International Conference on Field Programmable Logic and Applications

978-0-7695-4179-2/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.13

10

2010 International Conference on Field Programmable Logic and Applications

1946-1488/10 $26.00 © 2010 IEEE

DOI 10.1109/FPL.2010.13

10

offered by such a board make hard (to the best of our
knowledge) to deploy the complete set of rules of an IDS
such as Snort.

A. Our contribution

The idea in this paper tries to exploit FPGA dynamic
reconfiguration to save FPGA logic resources. A dynami-
cally reconfigurable FPGA is a device that can be partially
reconfigured while the rest of the application running in
the not reconfigured part can continue to operate without
interruptions. Many works propose to use his features for
different aims: in [5], [6], the target is the reduction of used
resources, while in [7], [8] is used for design of high reliable
circuits.

All proposed hardware implemented IDS systems [2],
[3] inspect all the incoming traffic with respect to a static
set of rules defined at compile time. A rule describes the
characteristics that a packet must satisfy in order to be
identified as a malicious packet. Matching a rule requires
both the classification of the application protocol (e.g. http,
TCP, mail, executable files, etc.) and the subsequent identifi-
cation of one or more suspicious contents (e.g. strings, bytes,
regular expressions), placed in specific positions inside the
data flow. We can note, however, that it is necessary to
perform different and specific types of analysis for packets
transporting different types of application protocol and data.
Therefore, is unnecessary to search inside the payload all
the suspicious contents, but only the content related to
the application protocol (usually identified exploiting the
TCP/UDP ports) transported by a packet. As a straightfor-
ward consequence, the easiest way to classify the packets
traveling on the internet is a classification based on the type
of transport protocol, (TCP or UDP) and on the port (e.g.
port 80 for http traffic, port 21 for ftp transfer and so on).
In Section II will be further discussed how to divide the
rule set of a NIDS with respect to the different types of
application protocol. Now we only remark that while the
first classification (port and type of transport protocol) does
not require many computational resources, the subsequent
rule matching task is very resource demanding.

To exploit the dynamic reconfiguration capabilities of
FPGAs, we divide the rule set of the NIDS hardware imple-
mentation into complementary sets that are activated by dif-
ferent types of traffic. After, we can deploy different FPGA
configurations corresponding to the different complementary
sets of rules. The packets related to a specific set of rules are
analyzed by configuring the FPGA with the corresponding
configuration bitstream. But, each FPGA reconfiguration
requires a certain amount of time, that corresponds to an
off-line interval, and the available time to analyze a packet
is very little compared with the FPGA reconfiguration time.
Therefore, the reconfiguration is unfeasible if applied for
each packet. To overcome this problem we propose classify
each packet in a first stage of the FPGA, after we store the

packets in different queues, depending on the type of data
transported, and to analyze by a reconfigurable second stage
of the FPGA all the packets coming from the same queue. In
this way the off-line time needed to reconfigure the FPGA is
payed only each time we decide to swap between different
queues. The system we propose therefore is composed by
two parts: a static part that performs the first classification,
and a dynamic part. The static part dispatches traffic to
elastic buffers, connecting one buffer at a time to the
dynamic part. In the dynamic part are continuously loaded
different configuration in order to inspect different type
of traffics. The partial reconfiguration can be implemented
maintaining the static part fully functional (see [13]). In
this way no packets are discarded during the reconfiguration
phases because the static part continues to store in the elastic
buffers the incoming traffic. The proposed approach allows
saving hardware resource, sharing the same resources of the
dynamic part between different configuration for inspection
of different type of traffic. The penalty of this type of
approach is the need of memory for storing the packets in the
queues. Our method allows to perform a trade-off between
the amount of FPGA logic resources and the amount of
requested memory. However, we remark that the proposed
system has been targeted to be implemented on a specific
card [4] that is widely used in networking community and
that fulfills the above mentioned requirements: the amount
of hardware resources available with the FPGA equipped in
that board is limited and the board is equipped with a 64
MBytes DRAM usable for implementing the queues. Finally
we note that, due to the latency introduced by the queues,
this system is suitable for intrusion detection systems, not
for intrusion prevention systems that use automatic active
reactions. Currently, the reaction to attack detected in a
network usually requires an human operation. In fact, the
unwanted countermeasures due to automatic intervention
activated by false positive attack detection causes an unac-
ceptable degradation of the quality of service in the network.
In this scenario the latency of our proposed method is
completely sustainable. The rest of the paper is organized
as follows: in section II the description of the typical NIDS
rules is presented, discussing how complementary sets can
be created. In section III the proposed strategy is presented,
while in section IV the evaluation in terms of throughput
and queue sizing are presented and finally, in section V the
conclusions are drawn.

II. DESCRIPTION OF SNORT RULES

In this section we present a description of NIDS rules,
following the rule structure used for Snort [1]. The Snort
IDS performs deep packet inspection of the incoming flows
checking if at least a rule is matched by one of the inspected
flow and eventually produceing an alert containing the in-
formation that allows identifying the malicious flow. Due to
the very different kinds of inspection that can be performed

11111111

(different protocols, virus and exploits for various operating
systems and so on) the rules can be defined in a very flexible
way in order to define one or more sets of bytes within
a flow that allow the unambiguous identification of every
anomaly. The rules are divided into two logical sections, the
rule header and the rule options. The rule header contains the
rules action and the header information that must be com-
pared with the packet, like: protocol, source and destination
IP addresses and net masks, and the source and destination
ports information. The rule option section contains alert
messages and information which parts of the packet should
be inspected to determine if the rule action should be
taken. Snort performs several types of content matching
searching for content, uricontent (searches the normalized
request URI field), regular expression. Moreover, sometimes
an anomalous behavior is identified when a content, common
in the payload, is matched in a specific position in the
packet (for example in the first 4 bytes of the payload).
Snort exploits a set of rule modifiers (i.e. depth, within,
offset,distance) to identify the position where a content has
to be matched to produce an alert. The complexity of the
Snort rules implies that their hardware implementation is
difficult. Even resolving the problem related to the flow
reassembly task, the realization of modifiers, PCRE and
the other Snort keyword could require a big effort and
a huge amount of hardware resources. Readers interested
in hardware realization of PCRE can for example refer to
[9], [10], [11]. Therefore we develop an approximate rule
matching hardware engine by using only a subset of each
rule. If we accept to delete some element from a rule we
obtain some false positive alert, but do not produce false
negative. To simplify the hardware implementation of the
rule matching engine, for each rule is extracted only one of
the content composing the rule. This choice corresponds to
a big simplification of the rules, but introduces a number
of false positive alerts. These false positive increases the
amount of traffic forwarded to the software IDS. However,
as reported in [2], the use of such method allows to filter up
to 90% of incoming traffic. Table I provides the distribution
of the number of snort rules divided by the protocol and the
port. The rules of the first row must be applied for all the
ports of TCP protocol, while the rules of the second row
are used only for HTTP traffic. Instead, in the third row we
collected all the TCP rules that use ports different from the
HTTP port. The fourth and fifth rows are rules for UDP and
ICP protocols, while the last row is related to rules for IP
protocol, that must be applied for all TCP and UDP packets.

From the data in table I we can easily identify two
complementary sets. The set called A is used when a packet
containing HTTP traffic must be scanned. The A set is
composed by the rules related to HTTP, and by the rules
(TCP and IP) that must be checked independently from the
port. The B set is composed by the TCP rules that have
a port different from the HTTP port, and by the TCP and

Table I
NUMBER OF SNORT RULES WITH RESPECT TO PROTOCOL

Protocol number of rules set
TCP rules with any port 162 A,B

HTTP rules 2610 A
TCP (non HTTP) rules 3482 B

UDP rules 384 A
ICMP rules 131 A

IP rules 34 A,B

IP rules. These two set are not completely disjoint because
some rules should be checked in both the cases of HTTP
or not HTTP traffic. Finally, the UDP and ICMP rule set is
disjoint from the set of TCP rules, and therefore could be
inserted both in the A or in the B set, or in a third set of
rules. We can insert the UDP and ICMP rules in the rule
set that requires less logic resources, to balance the resource
usage.

Even if we have developed a very specific framework
employing relaxed rules to identify the traffic that has to be
sent to Snort, however, the proposed solution (i.e. exploiting
the dynamic reconfiguration capabilities of FPGAs in order
to divide the rule Snort set), can be employed without
modification even if we want to implement in an FPGA
the whole set of complete Snort rules.

III. PROPOSED STRATEGY

In this section we describe our strategy to combine
dynamic reconfiguration and rule classification to minimize
the amount of hardware needed to realize a hardware based
NIDS. In fig. 1 we depict the schema of our system.

We use as target technology for the system implementa-
tion a reconfigurable FPGA with network interfaces (NetF-
PGA) [4]. The NetFPGA is a PCI card equipped with a
Xilinx FPGA Virtex II Pro, 4 Gigabit Ethernet ports, SRAM
and DRAM banks and therefore, even if the FPGA used
by this board is obsolete, is a suitable candidate for a fast
prototype of our architecture. The use of the NetFPGA
allows exploiting the integrated 4 Gigabit Ethernet ports,
the DRAM memory banks provided by the PCI card and
an interface with a PC host usable both for debugging and
for controlling the developed hardware. Finally, The Xilinx
FPGA Virtex II Pro can be dynamically reconfigured, as
foreseen for our application. All the blocks of the schema
in Fig. 1 are contained in the FPGA, with the exception
of the queues. These queues are realized with the external
DRAM memory, while the control part of the queues is
realized inside the FPGA. The main inputs of this system
are the incoming packets to be analyzed. These inputs are
classified depending on the type of traffic transported by the
packet. The classification divides the incoming packets into
two flows, corresponding to the two complementary A and B
sets. This classification is a static part of the reconfigurable
design because must be always performed by the system.
After the packets are classified, they enter one of the two

12121212

Figure 1. schema of the proposed system

queues depending on the result of classification. The outputs
of the queues are provided as inputs to the content matching
engines contained in the dynamic reconfigurable part of the
design. The queues are written by the classifier and are read
by the content matching engines. When the A ruleset is
loaded in the FPGA it read the packets stored in the A queue
until it is empty, while the B queue accumulates packets.
When the A queue is empty, the B ruleset is loaded inside
the FPGA, and the system start to process the packets in the
B queue. Both the A and B ruleset reconfigurable blocks
provide as outputs some alert signals that instruct the gate
block to forward the detected packet to the software IDS
for further analysis. The blocks realizing the ruleset are the
most resource consuming ones, because they must realize
the string matching of thousand of rules. The hardware
realizing the string matching has been extensively discussed
in [12] [3], and is reported in Fig. 2. We briefly describe the
structure of this block in order to identify the reconfigurable
part of the system.

An input byte enters in a flip-flop chain. The longest
content that has to be matched provides the maximum length
of the flip-flop chain. In this way the last M entered bytes are
stored in the flip-flop chain and can be evaluated in parallel
by the combinatorial network (shown in the dashed box of
Fig. 2). For each content, the combinatorial network checks
if each single character correspond to the expected one and
performs the logical AND of all the founded characters. The
switching between two different ruleset corresponds to the
modification of the combinatorial part of the string matching
engine. Fixing the length of the flip-flop chain as the greater
between the length of the longest contents of the two ruleset,
the same chain is able to provides the right inputs to both
the combinatorial networks realizing the A or the B ruleset.
This part represents the reconfigurable part of the system
and is also the most resource consuming part of the design,
growing with the number and with the complexity of the
implemented rules. In Table II we report the synthesis data
of the rule matching engine for the A and B rulesets.

The dynamic reconfiguration mechanism we propose fol-
lows the method presented in [13]. An area of the FPGA,
called partially reconfigurable region (PRR) has bees iden-

Table II
SYNTHESIS RESULTS FOR THE DIFFERENT IMPLEMENTATIONS OF

STRING MATCHING ENGINE - VIRTEX-II PRO 50

A ruleset B ruleset
of Flip Flops 5853 7090

of LUTs 11134 12837
of Slices 6373 8882

(utilization [%]) (26%) (36%)

tified to and will be reserved for implementing one of the
complementary ruleset. These ruleset represent the partially
reconfigurable module (PRM). Each PRM implementation a
single dynamic task that will be mapped into a PRR. From
the data of table II we can see that the PRR must be able to
host about the 36% of the FPGA, corresponding to the most
area demanding ruleset. The other ruleset can be loaded in
the same PRR obtaining a saving of 26% of resource with
respect to a static implementation in which the FPGA is
configured to realize both the A and the B ruleset.

IV. THROUGHPUT EVALUATION AND DEFINITION OF
QUEUE DEPTH

To evaluate the effectiveness of our system we should
prove that it is able to work at wire speed. The used
NetFPGA is able to collect data by using a Gigabit Eth-
ernet interface. Parallelizing the collected data one byte at
time, a 125 MHz clock can be used to drive the classifier
depicted in Fig, 1. Instead, the queues must be realized as
asynchronous FIFOs, with a write clock of 125MHz (8 ns),
and a read clock with a frequency of 133MHz (7,5ns). The
read frequency must be greater that the write one because,
we must sustain some period in which the data cannot be
read because the dynamic part of the system is in the recon-
figuration phase. Following the method described in [13] the
reconfiguration time of the dynamic part can be evaluated in
the order of 10 ms., and during the reconfiguration phase we
can suppose that at maximum 1.25 Mbytes (10ms/8ns) can
enter the queues. If we define Q the maximum number of
bytes that can be stored in the queue during the processing
phase, the system is able to empty a queue of Q bytes in
a time T = Q · 7, 5ns. During this time, the other queue
can accumulate up to T/8ns bytes. Therefore, in the worst
case the queue accumulates Q = T/8ns + 1.25MBytes.

13131313

Figure 2. Basic implementation of a rule matching block

The corresponding equation

Q = 1.25MB + Q · 7, 5ns/8ns (1)

has as solution Q = 20MB. This amount of data
completely fits the queue size that can be implemented in
the NetFPGA using the available 64MB DRAM.

V. CONCLUSIONS AND FUTURE WORKS

In this paper the dynamic reconfiguration features of
Xilinx FPGA are used to minimize the amount of logic
resource needed to realize a Network Intrusion Detection
System. The paper shows that our proposed system can
sustain the rate of data coming from a Gigabit ethernet
interface. Moreover, we evaluate the length of the queues
needed to sustain the gigabit rate. Our developed system
can be easily implemented on a widely used board for
networking application such as the NetFPGA. The presented
method is based on a first classification block that split the
flow of the incoming packets towards two queues. Each
queue is related to a specific block that is dynamically loaded
when the data in that queue must be analyzed. The data are
accumulated in a queue when the system is analyzing the
other queue or when it is in the reconfiguration phase. With
a suitable sizing of these queues the presented system is able
to work without packet losses. The presented classification
is the simplest one, but can divide the ruleset only in two
subsets. The presented method can be extended to divide the
ruleset in many subsets, increasing the number of dynamic
blocks and therefore improving the area saving capabilities.

ACKNOWLEDGMENT

This work has been partially supported by the European
Commission in the frame of the Project FP7-ICT PRISM,
contract number 215350.

REFERENCES

[1] Sourcefire, “Snort: The Open Source Network Intrusion De-
tection System” http://www.snort.org, 2003.

[2] Haoyu Song, T. Sproull, M. Attig, J. Lockwood, “Snort
offloader: a reconfigurable hardware NIDS filter”, Field Pro-
grammable Logic and Applications, 2005. International Confer-
ence on, 24-26 Aug. 2005

[3] C. Greco, E. Nobile, S. Pontarelli, S. Teofili “An FPGA
Based Architecture for Complex Rule Matching with Stateful
Inspection of Multiple TCP Connections”, SPL - VI Southern
Programmable Logic Conference, 24-26 March 2010

[4] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J.
Naous, R. Raghuraman, J. Luo, “NetFPGA-an open platform for
gigabit-rate network switching and routing”, IEEE International
Conference on Microelectronic Systems Education 2007

[5] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A
time-multiplexed FPGA”. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines, 1997.

[6] Y. Adachi, K. Ishikawa, S. Tsutsumi, and H. Amano, “An
implementation of the Rijndael on Async-WASMII”, Int. Conf.
on Field-Programmable Technology (FPT), 15-17 Dec. 2003.

[7] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dy-
namic fault tolerance in FPGAs via partial reconfiguration”,
IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000 17-19 April 2000.

[8] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirth-
lin, “Dynamic reconfiguration for management of radiation-
induced faults in FPGAs”, 18th International Parallel and Dis-
tributed Processing Symposium, 26-30 April 2004.

[9] R. Sidhu and V.K. Prasanna, “Fast Regular Expression
Matching Using FPGAs,” Proc. Ninth IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM), 2001

[10] C. Lin, C. Huang, C. Jiang, S. Chang, “Optimization of
Pattern Matching Circuits for Regular Expression on FPGA”,
IEEE Trans. on VLSI Syst., 15(12), 2007

[11] Y.H.E. Yang, W. Jiang, V. Prasanna, “Compact architecture
for high-throughput regular expression matching on FPGA”,
Proceedings of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, pp. 30–39, 2008

[12] I. Sourdis, N. Dionisios, S. Pnevmatikatos, “Scalable Multi-
gigabit Pattern Matching for Packet Inspection”, IEEE Trans.
VLSI Syst. 16(2): 156-166 (2008)

[13] P. Lysaght, B. Blodget, J. Mason, J. Young, B. Bridgford, “En-
hanced Architectures, Design Methodologies and CAD Tools
for Dynamic Reconfiguration of Xilinx FPGAS”, Proceedings
of the International Conference on Field Programmable Logic
and Applications (FPL-06), pages 12–17, 2006

14141414

