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Abstract

A Content Addressable Memory (CAM) is an SRAM based memory which can be accessed in
parallel in order to search for a given search word, providing as result the address of the matching
data. The use of CAM is widespread in many applications ranging from the controller of a CPU
memory cache to the implementation of lookup tables of high speed routers. Like conventional
memories, CAM can be affected by the occurrence of Single Event Upsets (SEU) which can alter its
operation causing different effects such as pseudo-HIT or pseudo-MISS events. In order to avoid
the effects of SEUs different approaches have been proposed in previous literature, but all of these
solutions require changes to the internal structure of the CAM itself. Differently from previous
approaches, in this paper we propose a method that does not require any modification to a CAM’s
internal structure and therefore can be easily applied at system level, using a suitable redundant
CAM component in order to obtain a CAM module with error detection and correction capabilities.

1 Introduction

A Content Addressable Memory (CAM) is an SRAM based memory able to compare the input
data against the data stored in the memory, providing as result the address of the matching data
[1]. Conceptually a CAM can be used to perform the inverse function of a RAM where we are given
data providing an address as input while in a CAM we give as input a data, receiving as result if and
where the data is stored in the memory. A CAM is therefore able to access within a clock cycle, to
all of the entries stored in its memory table and to compare them to the provided input. CAM with
small dimensions are commonly used in cache or Translation Lookaside Buffers (TLB), [2] while
large CAM are used in systems that must be able to a perform rapid search within a large amount
of data. Nowadays one of the most used application of CAM are related to packet forwarding and
classification in high speed network systems [3].

In recent years the implementation of CAM with large memory has been driven by their use
in network systems, that continuously increases the performance request of such components. To
satisfy these requests, state of the art CMOS technology nodes are being used to manufacture large
CAM circuits, however with the use nanometric scale systems, and the increase in the overall number
of stored bits, there has been a consequent increase in the error rate due to the occurrence of Single
Event Upsets also at sea level. These effects are well known for SRAM and DRAM memories and
many strategies have already been proposed to mitigate the effect of SEU in memories. However
these techniques are not suitable to be applied directly to CAM, and therefore new techniques to
mitigate SEU effects in CAM must be developed in order to use large CAM in complex systems while
ensuring high levels of reliability. In literature different techniques have been proposed to enhance
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robustness against SEU in CAM. For example in [4] the use of DRAM instead of SRAM has been
proposed, exploiting the assumption that DRAM are less susceptible to SEU that SRAM. In [5] the
content of the CAM is continuously refreshed by an associated DRAM with ECC features, in order
to scrub the memory recovering the CAM from errors due to SEU. Instead, in [6] the use of Hamming
codes, in conjunction with a modified match line circuit is proposed. SEU effects in cache memories
has been also investigated in [7], [8], [9]. The techniques proposed in these papers to prevent errors
due to SEU use a circuital approach that requires changes in the internal structure of the CAM,
and consequently a redesign of the entire chip, in order to be applied. Differently from the previous
approaches, in this paper we propose a method that does not require any modification to the internal
structure of a CAM, and therefore can be applied at a system level, using suitable redundant CAM
component in order to obtain a CAM with error detection and correction capabilities.

The rest of the paper is structured as follows: Section II discusses the basic properties of a CAM,
while section III shows the effects of a SEU hitting a CAM. In section IV the proposed architecture
of a CAM with error detection and error correction capabilities is presented. Finally, in Section V
the conclusions are drawn.

2 Description of a Content Addressable Memory

Figure 1. Scheme of a CAM

Figure 1 shows a schematic depiction a CAM. A CAM has an array based structure similar to a
RAM, with an arrangement in rows and columns. When a word has to be read or modified it can
be accessed similarly to a RAM through bitlines and wordlines. However, when the specific CAM
functionality has to be performed the operation is carried out in parallel. The input search word is
an n bit string which is concurrently compared to all the 2M words stored in the CAM. The number
of bits the search word (n) ranging from 36 to 144 bits is usually much larger than M which usually
ranges from from 7 bits to 15 bits [1]. For each line of the CAM a match-line wire signals whether
that word matches the searched word. If no match occurs an output ”‘miss”’ signal is raised from
the CAM. This miss signal can be easily derived as the NOR of all the match-line wires. It can
easily seen that the size of a CAM grows linearly with either the number of the entries and with
the size of the search word.

Figure 2 a) shows a circuit level representation of a CAM where only the structures related to
the search function are reported. The driver circuitry provides the search word to all the n-bits
CAM entries which are composed of n C blocks. Figure 2 b) shows a possible implementation of
the C block to work in a NOR fashion. The value on SL is compared with the D value stored in
the SRAM cell, when the values are different either the series of the transistors M1 and M2 or the
series of the transistors M3 and M4 connect ML to ground. Therefore, if at least one of the bits of
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Figure 2. a) Circuit level description of a CAM b) Circuit level description of a C
block

the search line being compared is different to the corresponding bit of the CAM entry the ML will
be connected to ground thus effectively behaving as a NOR gate.

All the computed matchlines are input to an encoder which if only one match has occurred
provides a normal one-hot to binary encoding of the matchline signals. Instead, if more than one
match has occurred two different policies can be applied.

The first policy is to use a priority encoder designed to establish a priority in the encoded output
thus providing only one output. For instance the priority encoder provides as an output the matching
word with the highest (or lowest) value: we call this resolved multimatch approach. A second policy
requires the introduction of an signal called Nmatch which provides the number of matched lines ;
on the encoder output the matched lines will be provided as an output one per clock cycle: we call
this unresolved multimatch approach.

By looking at the schematic of Figure 2 b) it can also be noticed that, a rough computation
of the transistor count for a CAM memory cell gives as a result about twice as many transistors
than a standard RAM cell. Therefore the memory density of a CAM is usually half of a SRAM
manufactured with the same technology node [1].

Entry Input Output
0 00100110 00100110
1 00110000 00000000
2 11111110 00000000
3 11111111 11111111

Table 1. Example of a routing table

As previously stated in the introduction, CAM find a wide usage in the implementation of fast
lookup tables for network routers. Table 1 shows an example of a routing table where each n = 8
bits input is matched against 4 entries coded with M = 2 bits. Each entry corresponds to an 8 bits
output which provides the final result of the search query. Therefore with the lookup operation, the
provided input corresponds to an output of the same size. Figure 3 shows how this table can be
implemented by using the combination of a four 8-bits entries CAM that provides a correspondence
between the 8 bits input and the 2 bits output, and a RAM that given the 2 bits as an address
provides the final 8 bit output.
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Figure 3. Scheme of a Look-up Address Table

3 Consequences of A Soft Error in CAM

A bit flip occurring in the memories composing a CAM can have different effects depending both
on the location of the SEU and on the functional usage of the CAM. In this section we discuss
the effect of soft errors, following the classification used in [10],[11]. The classification divides the
possible effects of an error in four cases:

1. Pseudo-miss: a SEU changes the content of the memory in a certain location, therefore when
that content is searched, the CAM does not provide a match. As an example a SEU hitting
entry 0 of the table I changes its content from 00100110 to 00100111. If the address 00100110
if requested, the CAM will respond with a miss signal.

2. Pseudo-hit: a corrupted memory content corresponds to another content. If this content is
searched, the CAM gives as response the location in which the error has occurred. With the
same example of the previous case, if the address 00100111 is requested, the CAM will respond
giving the entry 0 as an output. It should be noted that the same SEU can therefore produce
both a Pseudo-miss and a Pseudo-hit effect.

3. Multi-hit: if the address changed by a bit-flip assumes the same value stored in another entry
of the CAM, a Multi-hit error occurs. The occurrence of a multi-hit depends also to the kind
of CAM. In fact, in a fully associative CAM the sufficient condition for the multi-hit is the
equivalence of the value of two addresses. Instead, if a n-way set associative CAM is used,
the addresses must belong to the same associative set, in order to produce a multi-hit error.
The consequences of a multi hit error also depends on the kind of policy applied in case of a
multiple match (as described above). If a priority encoding (resolved multimatch) is used, the
outcome of a multi-hit error could be masked if the priority of the correct match is higher than
the priority of the wrong one. Instead, if the CAM uses the unresolved multimatch policy by
providing all of the matched records during k clock cycles, then in case of a multi-hit error,
the number Nmatch of matched output lines will be k + 1.

4. Replacement error: this error occurs when the CAM is used in a cache. Suppose that the
cache works in write-back modality and the data stored in the associated RAM is different
from the correspondent data in the main memory. If a SEU hit the address, the data stored
in the cache is no longer accessible and therefore is lost.

From the above description it can be seen that different kinds of errors are related not only to
the location of the SEU, but also to the type of CAM and to the use that is done of the CAM.

In the rest of the paper we suppose to use a fully associative CAM, and we consider both the
CAM with multi match capabilities or the priority encoder modality.

Moreover, we will focus on errors occurring in a CAM used for fast lookup (e.g. routers) rather
than in caches, therefore the replacement errors will not be considered in our analysis.
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4 Error Detection and Correction in a CAM

In this section we discuss how to detect and correct SEU induced errors in a CAM. As stated
in the introduction we will focus on a solution that will not require substantial modifications to
existing CAM circuits. As an example in [6] the words stored in a CAM are protected against
SEUs by utilizing one or more parity bits, and the SEU induced errors detection and correction is
demanded to a modified encoder block which effectively works also as an embedded Error Correction
block based on Hamming codes. This encoder therefore requires a number of several cascaded XOR
gates (see also [12]), which degrade area occupancy and most of all the timing performances with
respect to a non protected CAM. Moreover the solution proposed in [6] for matchline sense amplifiers
although quite interesting, could be affected by issues both related to power consumption and noise
immunity. In our proposed solution we also make use of parity check but we limit to a single parity
bit, and, by introducing a redundant copy of the CAM we correct SEU induced errors at a higher
system level. Therefore while we assume that the CAM output could be affected by an error, we
monitor the inputs and outputs of the CAM and by leveraging the characteristics of the fault model
described above, we show that we can correct the occurrence of errors. Differently from [6] the
address that is provided to the CAM already includes a parity bit, this encoding can be performed
inside of a block that is externally instantiated with respect to the CAM itself therefore not requiring
any structural modification to existing commercial CAMs. First we make preliminary consideration
regarding a parity encoded CAM: if the a CAM search word is encoded with a single parity bit and
we are in the common assumption that multiple bit upsets (MBU) can be avoided, then, we can
always say that a pseudo hit can never occur. In fact, with a parity encoded CAM if a SEU hits
a codeword it will turn it into a non codeword (rather than a wrong codeword) and thus since the
CAM search words are always codewords a false hit will never occur.

Figure 4. Scheme of the proposed error correction scheme for a CAM

Based on this assumption we can describe the proposed solution as shown in figure 4 The address
is parity encoded by passing through the ”‘PARITY ENCODER”’ module and then fed to the two
copies of the CAM. The outputs of the two CAMs are input to the ”‘CHECKER”’ which detects
whether there has been an error in the CAMs and provides the correct output. First we consider
the case where there are no multiple matches, then we will extend our analysis to the case that
the same word is stored into different CAM entries. The possible cases are summarized in Table 4.
When both CAM respond with a HIT then, because of the previous consideration that with parity
encoding there are no false HITs then either CAM A or CAM B outputs can be considered correct
and sent to the output (this will be different when we will make also the assumption of multiple
HITs as we will discuss below). Instead when the two CAMs provide a discordant HIT/MISS signal,
then for the same consideration that there are no false HITs the ”‘CHECKER”’ module will have
to choose as correct, the output of the CAM giving HIT. Therefore, the CAM that provided a MISS
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signal has been affected by a SEU induced pseudo miss error. Finally when both CAMs give a MISS
signal, because of the assumption of single fault applies, then neither of the CAMs is a HIT and the
overall status is MISS.

CAM A CAM B Correct Output/Status
HIT HIT A,B/HIT
HIT MISS A/HIT
MISS HIT B/HIT
MISS MISS none/MISS

Table 2. Possible error cases and correct output selection

When we are also making the assumption that multiple matches can occur on the CAM then
we must also further divide our analysis into two cases: the resolved and unresolved multimatch
policies. We are in the assumption that more than one entry of the CAM store the same word and
that one of these entries is affected by a SEU. Therefore in a copy of the CAM there will be k > 1
matching entries whereas in the other there will be k − 1 matching entries. First of all we notice
that both CAM will provide a HIT response, and that the CAM with k − 1 matches is affected by
an error (i.e. pseudo-miss). Therefore when the unresolved multimatch policy is used then it will
be sufficient to compare the Nmatch signals of the two CAMs and take as correct the output of the
CAM with the highest Nmatch value. Instead suppose that we are using the resolved multimatch
policy and that the priority encoder selects the word with the highest entry value; in this case
there as previously mentioned, it could be possible that the pseudo-MISS error would be masked
by the presence of another matching entry with a higher priority. However if this masking does not
occur, the two CAM provide different values. Since we know that no pseudo-HIT can occur, the
CHECKER block will be able to correct the error by selecting the entry with the highest priority
(i.e. in our example the entry with the highest value).

The error correction strategies based on the multimatch resolution policy are summarized in
Table 4.

CAM A CAM B Policy Correct Output/Status
HIT HIT resolved multimatch (highest priority entry)/HIT
HIT HIT unresolved multimatch highest Nmatch /HIT
HIT MISS either A/HIT
MISS HIT either B/HIT
MISS MISS either none/MISS

Table 3. Error correction based on the multimatch resolution policy

A different version of the above described approach can used when the CAM is used in conjunction
with a RAM to implement for example a Look-up address table as described in Figure 3. Because
of the fact that RAM are generally more dense and cheaper than similar sized CAMs it makes sense
to move the parity bits from the CAM to the RAM part of the circuit.

Figure 5 shows an example where a solution similar to what described in Figure 4 is adopted to a
case when also a RAM is used. Data written in CAM A and CAM B is not parity coded and thus,
differently from the previous example errors at the outputs of these CAMs can be either pseudo-
HIT or pseudo-MISS. Instead in the RAM A and RAM B modules redundant information is stored
which allows to correct errors occurring in either the RAM and the CAM side of the circuit. The
integrity of the data stored in the RAM itself is ensured by using an ECC code such as Hamming,
moreover in a RAM entry a further bit is used to store the parity of the address (input of the CAM
module) that yields to that entry of the RAM. As described in table 1 a CAM provides as an output
the index associated to the entry matching the search word at its input. This index is the address
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Figure 5. Error detection and correction for a CAM used in conjunction with a RAM

provided as an input to the RAM associated to the CAM which therefore provides always a value.
In every address of the RAM store the parity of the value given to the CAM as an input. Therefore
when the search word is matched in the CAM, the associated RAM provides as an output, the
corresponding output and the parity of the search word. The CAM system shown in figure 5 is
composed of two copies of CAM/RAM blocks, a parity encoder which provides the parity of the
input address (search word) and a checker that choses the correct output from the two copies based
on the policy described in Table 4. If a SEU hits a CAM entry the stored word will consequently
have an opposite parity to that stored in the corresponding RAM entry. We can assume that no
error has occurred in the CAMs when they both provide a MISS signal, as well as when they both
provide a HIT with correct search word parity P . Instead when both CAMs provide a HIT but the
corresponding parities P are different, then we can safely assume that the correct output is that
associated to the correct parity. In the latter case it should be noticed that the data stored in the
RAMs could even be identical although they are being read on different addresses (indexes). Finally
if the two CAMs provide conflicting HIT/MISS signals, we can check the parity associated to the
CAM that provided a HIT signal. If the parity is correct then the HIT is real otherwise if the parity
is not correct then the correct output was a MISS.

CAM A CAM B P(A) P(B) Correct Output/Status
HIT HIT good good (A,B)/ HIT
HIT HIT good wrong (A)/ HIT
HIT MISS good N/A (A)/HIT
HIT MISS wrong N/A none/MISS
MISS MISS N/A N/A none/MISS

Table 4. Error correction based on the CAM/RAM system

Finally we can discuss what happens in case of multimatch. As in the previously discussed case,
different policies should be applied. First it should be noticed that if a pseudo-HIT has happened
then parity of the outputs of the two RAMs will be different so the choice of the correct output on
the CHECKER can be done by just checking the parities, however if a pseudo-MISS has happened,
the parities of the two RAM outputs would be correct. When the chosen resolution policy is resolved
multimatch and there are two RAM outputs with correct parity but different values, (pseudo-MISS
)then the CHECKER has also to be fed with the entry outputs from both CAMs (dashed arrows
in figure 5) in order to choose the RAM output corresponding to the highest priority. Instead if
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the chosen resolution policy is unresolved multimatch at every clock cycle the CHECKER will be
input with the data output and the address parity P coming from both RAM A and RAM B. If a
parity error is detected on either input, then we can assume that a pseudo HIT has occurred on the
corresponding CAM. Consequently the CHECKER can safely select the other input as correct until
the end of the operation (single error assumption). Instead if both RAMs provide correct parities,
but discording values, then a pseudo MISS has occurred meaning that the failing CAM/RAM has
provided as output the entry with lower priority of the two. Therefore once such an event occurs
the CHECKER will select the input coming from the CAM providing a value with higher priority
and continue to select the output from the same CAM/RAM until the end of the operation (single
error assumption). When the resolved multimatch policy is used, the handling of errors can be
considered similar to what in seen in Table 4, while we will now describe a little further the case of
the unresolved multimatch resolution policy. Examples of how pseudo-MISS and pseudo-HIT are
corrected in our proposed scheme (when the unresolved multimatch policy is used) are shown in
Table 4 and Table 4 respectively.

In Table 4 the correct priority based sequence output should be (0,3,4,6,7), however CAM B
presents a pseudo-MISS which causes it to skip the entry with value (4). The CHECKER module
corrects this error by realizing that RAM A outputs a value with higher priority (4) than RAM
B (6), therefore the module will select (4) and all the subsequent values from RAM A. It can be
noticed that in this case the parity values of both RAM entries are correct therefore parity cannot
be used to correct a pseudo-MISS.

RAM A RAM B P(A) P(B) Correct Selection/Value
0 0 good good (A,B)/ 0
3 3 good good (A,B)/ 3
4 6 good good (A)/4
6 7 good good (A)/6
7 - good - (A)/7

Table 5. Error correction of a pseudo-MISS when using unresolved multimatch pol-
icy

Table 4 shows the error correction of a pseudo-HIT: the correct priority based output sequence
should be (0,3,6,7) but a pseudo-HIT in CAM A introduces the extra entry (4). Differently from
the pseudo-MISS case, the parity bit associated to RAM A at entry (4) is wrong therefore allowing
the CHECKER module to detect and correct the pseudo-HIT error by selecting all the subsequent
values from RAM B.

RAM A RAM B P(A) P(B) Correct Selection/Value
0 0 good good (A,B)/ 0
3 3 good good (A,B)/ 3
4 6 wrong good (B)/6
6 7 good good (B)/7
7 - good - none/-

Table 6. Error correction of a pseudo-HIT when using unresolved multimatch policy
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5 Conclusion

Content Addressable Memories like other memories can be affected by the occurrence of Single
Event Upsets (SEU) which can alter its operation causing different effects such as pseudo-HIT or
pseudo-MISS events. In order to avoid the effects of SEUs different approaches have been proposed
in previous literature, but all of these solutions required changes to the internal structure of the
CAM itself. This paper has proposed a method to detect and correct errors occurring on a CAM
by a combination of CAM duplication and the usage of single parity bit encoding therefore not
requiring any modification to the internal structure of existing CAM architectures. It has been
shown that the proposed approach can be used to detect and correct errors occurring also when
different multimatch resolution policies are employed. Finally it has been shown that the proposed
approach can also be applied to a CAM/RAM combined system by including the parity encoding
in the RAM side of the system thus allowing to double the number of possible entries in the CAM.
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