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Abstract

In this paper a novel technique for detecting and correcting errors in the RNS representation is presented. It is based on the
selection of a particular subset of the legitimate range of the RNS representation characterized by the property that each element
is a multiple of a suitable integer number m. This method allows to detect and correct any single error in the modular processors
of the RNS based computational unit. This subset of the legitimate range can be used to perform addition and multiplication in
the RNS domain allowing the design of complex arithmetic structures like FIR filters. In the paper, the architecture of a FIR
filter with error detection and correction capabilities is presented showing the advantages with respect to filters in which the error
detection and correction are obtained by using the traditional RNS technique.

I. INTRODUCTION

Nowadays digital systems are very often used to implement high complexity Digital Signal Processing (DSP) algorithms
working in real time. The requirements in terms of speed and circuit complexity of these applications are stringent, and the
mandatory use of technologies with the best available feature size increases the probability of the occurrence of faults.

To face these problems much research work has been published on fault detection in DSP architectures. In particular, with
respect to the basic arithmetic operations, self-checking adders based on residue codes [1], [2], parity codes [3], or Berger
codes [4] have been proposed. With respect to basic DSP building blocks, the RRNS (Redundant Residue Number System)
representation has been used in the implementation of FIR filters [5], [6], [7] allowing fault detection and correction.

The use of RRNS gives to the designer, advantages both in terms of error detection and correction capabilities and in terms
of maximum operating frequency. In fact, the operations on each residue digit are independent and so the addition, subtraction,
and multiplication on the full dynamic range are split in different channels and performed in parallel on each of the moduli
over a smaller dynamic range. The error detection in RRNS is based on the following consideration: the representation range
is divided in two intervals: the legitimate range and the illegitimate range. An error in a single module is detected if, after the
conversion from the RNS to the two’s complement representation, the result belongs to the illegitimate range.

In this work the RNS representation range defined by the chosen moduli set is divided in two subsets: the legitimate subset
is composed by any element that is exactly divisible by an additional modulus, i.e. the integer number m, while the other
elements belong to the illegitimate subset. The paper shows how elements of the legitimate subset can be used to perform
addition and multiplication and the architecture of a FIR filter with fault detection and correction capabilities is presented.

The paper is organized as follows: in Section II a background on RNS and RRNS arithmetic is given. In Section III, the
new method to obtain error detection is presented, and the implementation of a FIR filter based on this method is described.
In Section IV the extension of this method to achieve error correction is presented, while in Section V the implementation of
a set of example FIR filter with error correction capabilities is shown, and the advantages with respect to the traditional RRNS
representation are discussed. The Conclusions are drawn in Section VI.

II. RNS-RRNS BACKGROUND

In this section a short background on RNS and RRNS is presented, and the traditional techniques to implement FIR filters
with error detection and correction capabilities based on the RRNS are shown.

A. Background on Residue Number System

A Residue Number System (RNS) is defined by a set of relatively prime integers {m1, m2, · · · , mP }.
The dynamic range of the system is given by the product of the moduli mi:

M =
P∏

i=1

mi

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

1550-5774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.32

436

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

1550-5774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.32

436



Any integer X ∈ [0, M − 1] has a unique RNS representation given by

X
RNS−→ (< X >m1 , < X >m2 , · · · , < X >mP

) (1)

where < X >mi
= X mod mi

A comprehensive description of the RNS theory and its applications to computer systems and DSP can be found in [8], [9],
and [10]. In RNS, operations such as addition and multiplication, are executed in parallel as shown in the following formula

Z = X op Y RNS−→

 < Z >m1=< Xm1 op Ym1 >m1

· · ·
< Z >mP

=< XmP
op YmP >mP

(2)

As a consequence, arithmetic operations are split into several modular operations with reduced word length.
The conversion of the RNS representation of Z is accomplished by using the Chinese Remainder Theorem (CRT)

Z = CRT (Zm1 , · · · , ZmP
) =

〈
P∑

i=1

< Zmi
· ki >mi

·Mi

〉
M

(3)

where Mi = M
mi

and ki are obtained by < Mi · ki >mi
= 1, i.e. they are the multiplicative inverse of Mi modulo mi.

Clearly, the input and output conversions, constitute a significant overhead in systems implemented in RNS. However,
efficient methods to perform those conversions are presented in [11], [12], and [13].

B. Background on Redundant Residue Number System for error detection and correction

A Redundant Residue Number System (RRNS) is defined as a residue number system added with r additional moduli. The
first k moduli form a set of non redundant moduli, and their product represents the legitimate range, M that is,

M =
k∏

i=1

mi

The remaining P − k = r moduli form the set of redundant moduli that allows error detection and correction where MR is
defined as

MR =
P∏

i=k+1

mi

Given a residue vector (xm1 , . . . , xmP
), the corresponding integer X belongs to the interval [0, MT − 1], where MT =

M ·MR.
This interval, usually called total range, can be divided into two adjacent intervals by considering the ranges defined by the

non redundant and redundant moduli. The interval [0, M − 1] is called the legitimate range and the interval [M, MT − 1] is
the illegitimate range.

In RRNS error detection and correction is obtained by constraining the operands and the results in the legitimate range.
This restriction defines the dynamic range of the system. The mi-projection of X , denoted Xi, is defined as the residue vector
(xm1 , · · · , xmi−1 , xmi+1 , · · · , xmP

), i.e. the representation of X with the i-th residue digit deleted.
A single error occurs when a legitimate vector (xm1 , · · · , xmi , · · · , xmP

) is changed into a different residue vector,
(xm1 , · · · , xmi , · · · , xmP

) by the occurrence of an error in the i-th digit, the number corresponding to this vector is X .
In [6] has been proved that, under the hypothesis of ordered moduli (i.e. mi < mi+1 ∀i), in a RRNS representation with

r = 2 any error in a single module produces an illegitimate number X . Moreover, Xi is legitimate, where i is the residue
affected by an error, while the other projections Xj , for j 6= i, i = 1, . . . , P are all illegitimate. From these considerations
is straightforward to detect and correct an error in the RRNS representation. The erroneous module is that characterized by
his mi-projection belonging to the legitimate range, while the correct value of the integer can be obtained by performing the
reverse conversion of the Xi projection.

C. Implementation of FIR Filters in RNS

A N taps FIR filter is expressed by

y(n) =
N−1∑
k=0

akx(n− k) (4)

The RNS implementation of the FIR filter is a direct consequence of equation (2),
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y(n) =
N−1∑
k=0

akx(n− k) RNS−→


Ym1(n) =

〈∑N−1
k=0 〈< ak >m1 ·xm1(n− k)〉m1

〉
m1

· · ·
YmP

(n) =
〈∑N−1

k=0 〈< ak >mP
·xmP

(n− k)〉mP

〉
mP

(5)

Adding error detection capabilities to the FIR filter requires the use of an additional modulus mP+1 and a comparator
after the RNS to binary converter. A well know architecture of a RNS FIR filter capable of error detection using the RRNS
representation is given in Fig. 1 ( [6]).
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Fig. 1. RNS implementation of a FIR filter with error detection

The binary to RNS conversion is performed by reducing modulo mi the input sequence x(n), providing the residue digits
xmi

. The parallel filters mod mi compute the residues Ymi
(eq. (5)), while the the standard binary representation of the result

y(n) is obtained by the RNS to the binary conversion block. An error inside one of the modulo mi filters produces a result
belonging in the illegitimate range and the comparator after the RNS to the binary converter allows the detection this error.

An RRNS FIR filter with error correction capabilities is shown in Fig. 2 in the case of P=3.
It requires two additional moduli with respect to the RNS representation, a reverse converter for each mi projection, and

a block choosing the value of the mi projection that is in the legitimate range. The blocks called CRT (Chinese Remainder
Theorem) performs the reverse conversion for the mi projections, while the block called ”choose legitimate” selects which
input belong in the legitimate range.

< >m1

x(n)

< >m2

< >m3

< >m4

m1 filter

m2 filter

m3 filter

m4 filter

CRT

< >m5 m5 filter

CRT CRT CRT CRT

choose
legitimate y(n)

Fig. 2. RNS implementation of a FIR filter with error correction

The main overhead of this architecture is related to the implementation of a CRT block for each module. For a RNS with
a moduli set of i element we need i CRT blocks. Each CRT block is composed by:

1) i− 1 modulo mi constant multipliers to compute < Zmi · ki >mi

2) i− 1 constant multipliers for Mi

3) i− 2 modulo M adders
Therefore, the overall overhead due to the i CRTs grows quadratically with the number of element i of the moduli set.
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III. ERROR DETECTION IN RNS BY USING SCALED VALUES

To define the method for error detection in RNS using scaled values we restrict the discussion to a moduli set composed only
by prime numbers. The choice is not reductive because in RNS the use of prime moduli gives to the designer the possibility
to exploit the isomorphism technique [8] to perform multiplication modulo a prime avoiding the use of multipliers.

Given the moduli set {m1, m2, · · · , mP } the range of the traditional RNS representation is [0, M −1], with M =
∏P

i=1 mi.
Without loss of generality, we suppose that the moduli set is ordered. The subset C of the range constitute the legitimate subset
and is formed by the numbers x ∈ [0, M − 1] with m | x (i.e. x is exactly divisible by m), with the constrains that m is
relatively prime with respect to each element of the moduli set and m > mP . The illegitimate subset is composed by all the
numbers not belonging to C. The mapping between the integer representation and the Scaled RNS (SRNS) representation is
defined by

X
Scaled RNS−−−−−−−−→ (< m ·X >m1 , < m ·X >m2 , · · · , < m ·X >mP

) (6)

The SRNS representation range is [0, Ms − 1], with Ms = b
∏n

i=1 mi/mc. It must be noticed that if m ≈ mP , the range
representable with this mapping is similar to the range of an RRNS representation with {m1, m2, · · · , mP } as the set of non
redundant moduli and m = mP+1 as the redundant modulus.

For the SRNS representation a relationship similar to equation (2) can be used for the addition operation, i.e.

Z = X + Y
Scaled RNS−−−−−−−−→

 < m · Z >m1=<< m ·X >m1 + < m · Y >m1>m1

· · ·
< m · Z >mP

=<< m ·X >mP
+ < m · Y >mP

>mP

(7)

that is valid until the operand and the results belong to the range [0, Ms − 1].
Instead, for multiplication the following relationship holds:

Z = X · Y Scaled RNS−−−−−−−−→

 < m · Z >m1=<< X >m1 · < m · Y >m1>m1

. . .
< m · Z >mP

=<< X >mP
· < m · Y >mP

>mP

(8)

that is valid until the operand and the results belong to the range [0, Ms− 1]. We invite the reader to notice that, differently
from addition, multiplication is performing scaling only one of the two operands.

Now let us suppose that a single module error occurs to a number represented in the scaled RNS. If the original value is X =
(xm1 , · · · , xmi , · · · , xmP

)SRNS , the corresponding erroneous value can be expressed as X = (xm1 , · · · , xmi , · · · , xmP
)SRNS

and the value of the single module error is defined as E = (0, · · · , ei, · · · , 0), with ei = xmi − xmi and ei ∈ [0, mi− 1]. The
error is detected if the value X is an element of the illegitimate range, i.e. m - X (m not divide X). This condition occurs if
the integer representation of the error E in not divisible by m.

Now, we define the condition under which all possible single module errors E respect the condition m - E.
Applying the Chinese Remainder Theorem to E we obtains

E = CRT ((0, · · · , ei, · · · , 0)) =< ei · ki >mi
·

n∏
j=1,j 6=i

mj

The constrain that m is relative prime with respect to mi have as a consequence that

m | E = ei · ki ·
n∏

j=1,j 6=i

mj ⇐⇒ m |< ei · ki >mi
(9)

where ki are the multiplicative inverse of Mi modulo mi.
The value of < ei · ki >mi

is less than mi and therefore a sufficient condition for equation (9) is:

m > mi ∀i (10)

For the set of moduli that respect the condition expressed in eq. (9) the single module error detection can be performed
easily by checking the remainder modulo m of the result after the RNS to binary conversion. From the above discussion is
possible to detect an error in the scaled RNS representation computing < E >m. If no errors occur < E >m= 0, otherwise
< E >m 6= 0.
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scaled RNS value integer value RNS representation
0 0 (0, 0, 0)
1 11 (2, 1, 4)
2 22 (1, 2, 1)
3 33 (0, 3, 5)
4 44 (2, 4, 2)
5 55 (1, 0, 6)
6 66 (0, 1, 3)
7 77 (2, 2, 0)
8 88 (1, 3, 4)
9 99 (0, 4, 1)

TABLE I
RNS REPRESENTATIONS FOR THE CODEWORD DIVISIBLE BY 11

A. A numerical example

Given the set of moduli 3, 5, 7, M = 105, if m = 11 is chosen, the codeword values in the RNS range are {0,11,22,33,44,
55,66,77,88,99}. For the chosen moduli set the ki values are 2, 1, 1 and equation (9) is respected for all the possible ei

values. The correct codewords represented in RNS are shown in Table I. In the first column the value used in the proposed
coding is reported, while in the second column the corresponding integer value is shown.

All the values that a single module error can assume are reported in Table II. It is easy to see that for all the possible errors,
the residue modulo 11 is always different from zero, allowing the detection of any possible single module error.

error RNS coordinates Integer value value mod 11
(1, 0, 0) 70 4
(2, 0, 0) 35 2
(0, 1, 0) 21 10
(0, 2, 0) 42 9
(0, 3, 0) 63 8
(0, 4, 0) 84 7
(0, 0, 1) 15 4
(0, 0, 2) 30 8
(0, 0, 3) 45 1
(0, 0, 4) 60 5
(0, 0, 5) 75 9
(0, 0, 6) 90 2

TABLE II
VALUE OF ERRORS IN AN RNS MODULE

An arithmetic computation in the SRNS representation is illustrated in the following example. Given the expression 2·3+1 =
7, using the SRNS representation the operation without error can be expressed as

(2, 2, 2) · (0, 3, 5) + (2, 1, 4) = (2, 2, 0)

The multiplication step is performed between the scled value of 3, i.e. (0,3,5) and the unscaled value of 2, i.e. (2,2,2). Now
we suppose that an error occurs in the second residue changing the result from 2 to 4 (the error is (0, 2, 0)). The erroneous
result is (2, 4, 0), that corresponds to the integer value 14, that is not divisible by 11.

B. FIR filter with error detection capability

Using the result presented in the previous section the design of a FIR filter with error detection capability that exploits the
characteristic of the SRNS representation is obtained by using the following additional hardware resources:

1) a constant multiplier before the conversion of the input sequence into the RNS representation,
2) a constant divider after the conversion of the output sequence from the RNS representation to the binary one,
3) a modulo m reduction block to check if the result is a multiple of m.
The architecture of the FIR filter with error detection is shown in Fig. 3.
The < ak >mi

coefficients of the FIR filter are computed in standard RNS representation to respect the equivalence defined
in equation (8) for multiplication in scaled RNS. The overhead of this schema is strictly dependent by the choice of the scaling
factor m. With the right choice this overhead can be drastically reduced. For example, if we choose m = 2i, the multiplication
is performed by shifting left the input sequence samples, the division by shifting right discarding the i less significant bits of
the result after the RNS to binary conversion, the modulo m reduction of the result consists in taking the i less significant bits
of the result, and the congruence to zero is checked by the logic OR of the i less significant bits. In this case, the overhead
of the additional hardware resources, is negligible. In fact, the additional hardware resources for m = 2i are:
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Fig. 3. SRNS implementation of a FIR filter with error detection capability

1) the constant multiplier simply is a shift of the input bits,
2) the result of the division by 2i is obtained discarding the i less significant bits.
3) the bit composing the result of the modulo 2ioperation are the i less significant bits of the RNS to binary conversion.
4) the block for error detection is an i-input OR.

IV. ERROR CORRECTION IN RNS BY USING SCALED VALUES

To add error correction capabilities to the scaled RNS representation the sufficient and necessary condition is that two
different errors correspond to two different values of < E >m. We call this condition as no aliasing condition. The no aliasing
condition allows to define a one to one map between the value of < E >m and the value of E that is the value of the error
occurred in the scaled RNS representation. Subtracting E to the output of the RNS to binary conversion of Fig. 3 we can
obtain the correct value of the output. To identify the relationship between the moduli set {m1, m2, · · · , mP } and m that
satisfy the no aliasing condition we take two different errors E′ = (0, · · · , e′i, · · · , 0) and E′′ = (0, · · · , e′′j , · · · , 0).

First of all we define the no aliasing condition < E′ >m 6=< E′′ >m as < E′ − E′′ >m 6= 0.
If i = j the errors E′ and E′′ correspond to errors occurred in the same mi module. In this case E′ − E′′ = (0, · · · , e′i −

e′′i , · · · , 0) and the no aliasing condition correspond to the condition defined in the previous section for error detection. Instead,
if the errors occur in different moduli the value E′ − E′′ is:

E′ − E′′ = (0, · · · , e′i, 0, · · · 0, e′′j , · · · , 0)

To show the condition that must be satisfied in this case, we remark that the moduli set {m1, · · · , mi, · · · , mj , · · · , mP }
is equivalent to the moduli set {m1, · · · , m∗, · · · , mP }, where m∗ = mi ·mj substitute the two moduli mi and mj . Using
this moduli set equivalence the value of E′ − E′′ can be expressed as:

E′ − E′′ = (0, · · · , e∗, · · · , 0)

where e∗ = CRT (e′i, e
′′
j ) and the CRT is computed on the moduli set composed by mi and mj . After this manipulation

the case of i 6= j is re-conducted to the first case and the no aliasing condition is the same one defined for error detection.
The condition < E′ −E′′ >m 6= 0 is therefore equivalent to m∗ < m. This condition is verified for all the value of i and j if

m > mi ·mj ∀i, j (11)

If the condition expressed in eq. (11) is satisfied all possible errors occurring in a single module correspond to one and only
one value of < E >m and therefore from the value of < E >m we can derive the error value E.

Let us suppose that an error ei occurs in the i module changing the value of the output from Y (the correct value) to
Ȳ = Y + E. The value of E is:

E = ei ·Mi (12)

where ei is in the range [−mi + 1, mi − 1].
The corresponding < E >m value is:

< E >m=< ei ·Mi >m

Now we can multiply modulo m for the inverse modulo m of Mi. This inverse, M−1
i exist because m is relative prime with

respect to all the mi, and therefore is prime with respect to Mi. After this multiplication the equation becomes:

< ei >m=< M−1
i · E >m=<< M−1

i >m · < E >m>m
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Defining
ēi =<< M−1

i >m · < E >m>m

and using the inequality mi < m the following equation holds:

ei =
{

ēi if ēi < mi

ēi −m if ēi > mi
(13)

The ei values computed from equation (13) can be used to compute some candidate erroneous values Ei defined as Ei =
ei ·Mi.

The correct value E is one of the Ei candidate values. The choice of the right Ei value can be performed computing
< Ȳ −Ei >M . The only value of < Ȳ −Ei >M that is exactly divisible by m is the corrected value of output. The uniqueness
and the existence of an Ei that satisfy the condition < Ȳ − Ei >M | m is assured by the no aliasing condition previously
discussed.

A. A numerical example

Now we give a numerical example of the scaled RNS representation with error correction capabilities. The moduli set is
chosen as {11, 13, 15}, M = 2145, and m = 256.

The Mi values for the chosen moduli set are M1 = 195, M2 = 165, M3 = 143, while k1 = 7, k2 = 3, k3 = 2.
The values of < M−1

i >256 are < M−1
1 >256= 235, < M−1

2 >256= 45 and < M−1
3 >256= 111.

The codeword values in the RNS range are 0, 256, 512, 768, 1024, 1280, 1536, 1792, 2048 that are all divisible by 256. The
correct codewords represented in RNS are shown in Table III. In the first column the value used in the proposed coding is
reported, in the second column the corresponding integer value is shown and in the last column the RNS representation is
given.

scaled RNS value integer value RNS representation
0 0 (0, 0, 0)
1 256 (3, 9, 1)
2 512 (6, 5, 2)
3 768 (9, 1, 3)
4 1024 (1, 10, 4)
5 1280 (4, 6, 5)
6 1536 (7, 2, 6)
7 1792 (10, 11, 7)
8 2048 (2, 7, 8)

TABLE III
ERROR CORRECTING SCALED RNS REPRESENTATIONS CODEWORDS

All the values that a single module error can assume are reported in Table IV. It is easy to see that for all the possible
errors, the residue modulo 256 is always different from zero. The no aliasing condition is verified, and all modulo 256 values
the are different.

error RNS Integer value error RNS Integer value error RNS Integer value error RNS Integer value
coordinates value mod 256 coordinates value mod 256 coordinates value mod 256 coordinates value mod 256
(1, 0, 0) 1365 85 (10, 0, 0) 780 12 (0, 9, 0) 165 165 (0, 0, 6) 1716 180
(2, 0, 0) 585 73 (0, 1, 0) 495 239 (0, 10, 0) 660 148 (0, 0, 7) 2002 210
(3, 0, 0) 1950 158 (0, 2, 0) 990 222 (0, 11, 0) 1155 131 (0, 0, 8) 143 143
(4, 0, 0) 1170 146 (0, 3, 0) 1485 205 (0, 12, 0) 1650 114 (0, 0, 9) 429 173
(5, 0, 0) 390 134 (0, 4, 0) 1980 188 (0, 0, 1) 286 30 (0, 0, 10) 715 203
(6, 0, 0) 1755 219 (0, 5, 0) 330 74 (0, 0, 2) 572 60 (0, 0, 11) 1001 233
(7, 0, 0) 975 207 (0, 6, 0) 825 57 (0, 0, 3) 858 90 (0, 0, 12) 1287 7
(8, 0, 0) 195 195 (0, 7, 0) 1320 40 (0, 0, 4) 1144 120 (0, 0, 13) 1573 37
(9, 0, 0) 1560 24 (0, 8, 0) 1815 23 (0, 0, 5) 1430 150 (0, 0, 14) 1859 67

TABLE IV
VALUE OF ERRORS IN AN RNS MODULE

In the following example, an arithmetic computation in the SRNS representation is illustrated. Given the expression 2·3+1 =
7, using the SRNS representation the operation without error can be expressed as

(2, 2, 2) · (9, 1, 3) + (3, 9, 1) = (10, 11, 7)

Now we suppose that an error occurs in the third residue changing the result from 7 to 8 (i.e. the error is (0, 0, 1)). The
erroneous result is (10, 11, 8), that corresponds to the integer value 2078, that is not divisible by 256. Computing the values
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of ēi from the value < E >256= 30 we obtain ē1 =< 30 · 235 >256= 138, ē2 =< 30 · 45 >256= 70, ē3 =< 30 · 111 >256= 2.
e1 and e2 are out of the range [−mi + 1, mi − 1] and therefore do not represent a possible candidate value.

However, the candidate values for Ei are: E1 = 138 · 195 = 26910, E2 = 70 · 165 = 11550 and E3 = 2 · 143 = 286. The
value of < Ȳ − Ei >M are:

< Ȳ − E1 >M=< 2078− 26910 >M= 908

< Ȳ − E2 >M=< 2078− 11550 >M= 1253

< Ȳ − E3 >M=< 2078− 286 >M= 1792

< Ȳ − E3 >M identify the error in the third digit, and the correct value is 1792, that is the value corresponding to the
SRNS value of 7.

B. FIR filter with error correction capability

Now we present the architecture of a FIR filter that use scaled RNS representation to achieve error correction. Like in the
case of error detection we need some additional hardware resources. For the case of a SRNS representation with a moduli set
of i elements we have:

1) a constant multiplier before the conversion of the input sequence into the RNS representation,
2) a constant divider after the conversion of the output sequence from the RNS representation to the binary one
3) a modulo m reduction block to obtain < E >m

4) i modulo m constant multiplier to obtain ēi

5) i constant multiplier to obtain the different candidate value of Ei

6) i comparator between ēi and mi

7) i modulo M adder to compute the candidate correct value
8) i modulo m reduction block to select the correct value
9) a mux selecting the right Ei value
The architecture of the FIR filter with error correction capabilities is shown in Fig. 4
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Fig. 4. SRNS implementation of a FIR filter with error correction capability

Also in this case the overhead of this schema is strictly dependent by the choice of the scaling factor m and the use of
m = 2n allows to reduce the resource occupation of the additional blocks.

V. IMPLEMENTATION OF SCALED RNS FILTERS

In this section some FIR filter has been implemented to carry out a comparison between our technique and the standard
RRNS one.

The dynamic range of a filter depends on the dynamic range of coefficient, input data and number of taps, therefore the
choice of moduli sets is dependent by these parameters. We choose two cases, one with 8 bits input data and coefficients and
another with 12 bits input data and coefficients. The number of taps used to implement the filters vary from 32 to 128 taps and
we restricted our analysis to constant coefficient filters. The implementation has been carried out on the Xilinx Virtex V FPGA
and the moduli has been chosen to satisfy the relationship mi ≤ 26. In table V the different parameters the dynamic range of
the filter and the chosen moduli set are presented. The moduli set has been defined for the RNS representation, without error
detection and correction capability, for the standard RRNS and for the proposed scaled RNS.

For dynamic ranges up to 23 bits the unredundant representation use 4 moduli, the RRNS use six moduli, while the SRNS
use six or seven moduli depending on the dynamic range of the filter. For the dynamic range between 29 and 31 both the
RRNS and the SRNS require 8 moduli. The dynamic range of the SRNS is computed as Ms = blog2(

∏n
i=1 mi/m)c, where

m = 212 is chosen to satisfy equation (11). The table shows how for most of the example filter the number of moduli of the
RRNS is the same of the SRNS representation. The resource usages of the filters taken into account are summarized in table
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Name input/coefficient number dynamic unredundant RRNS SRNS
length of taps range moduli set moduli set moduli set

FIR1 8 32 21 61,59,53,47 64,63,61,59,53,47 63,61,59,53,47,43
FIR2 8 64 22 61,59,53,47 64,63,61,59,53,47 63,61,59,53,47,43
FIR3 8 128 23 61,59,53,47 64,63,61,59,53,47 63,61,59,53,47,43,41
FIR4 12 32 29 61,59,53,47,43,41 64,63,61,59,53,47,43,41 63,61,59,53,47,43,41,37
FIR5 12 64 30 61,59,53,47,43,41 64,63,61,59,53,47,43,41 63,61,59,53,47,43,41,37
FIR6 12 128 31 61,59,53,47,43,41 64,63,61,59,53,47,43,41 63,61,59,53,47,43,41,37

TABLE V
PARAMETERS AND DYNAMIC RANGE OF THE EXAMPLES FILTERS

VI both for RRNS and for SRNS. In the last column of table VI the ratio between resource occupation of RRNS and SRNS
is given. The resource usage has been divided in three parts:

1) resource occupation for the forward converters (modulo mi reduction)
2) resource occupation for all the modulo mi filters
3) resource occupation for the CRT and the error correction blocks

RRNS SRNS ratio between
Filter forward mi filters CRT and error total usage forward mi filters CRT and error total usage RRNS and
Name (#LUTs) (#LUTs) correction (#LUTs) (#LUTs) (#LUTs) (#LUTs) correction (#LUTs) (#LUTs) SRNS
FIR1 70 1760 1344 3174 84 1920 650 2654 83%
FIR2 70 3520 1344 4934 84 3840 650 4574 92%
FIR3 70 7040 1344 8454 98 8960 737 9795 115%
FIR4 98 2400 2472 4970 112 2560 853 3525 71%
FIR5 98 4800 2472 7370 112 5120 853 6085 82%
FIR6 98 9600 2472 12170 112 10240 853 11205 92%

TABLE VI
RESOURCE OCCUPATION OF EXAMPLES FILTERS

It can be noticed that, when the area overhead due to the error correction of RRNS a significant part of the resource
occupation, the use of the SRNS allows to reduce this overhead up to 30% with respect to the RRNS method. Instead, when
the number of moduli used for SRNS is greater than the one used for RRNS the RRNS is more convenient than SRNS.

VI. CONCLUSIONS

In this paper a novel error detection and correction technique for RNS representation is proposed. It is based on the use of
a subset of the RNS legitimate range in which each element of the subset is a multiple of a number m with the constrain that
m > mi, where mi are the elements of the set of moduli used in the RNS representation. This method allows to detect and
correct any single error in the modular processors of the RNS based computational unit. The paper also shows how this method
is suitable for the design of FIR filters with error detection and correction capabilities. Comparing the proposed technique with
respect to the traditional one the use of scaled RNS allows reducing overhead avoiding the use of different CRT modules for
error correction.
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