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Abstract

In this paper the design of a FIR filter with self checking capabilities based on the residue checking is analyzed. Usually
the set of residues used to check the consistency of the results of the FIR filter are based of theoretic considerations about the
dynamic range available with a chosen set of residues, the arithmetic characteristics of the errors caused by a fault and on the
characteristic of the filter implementation. This analysis is often difficult to perform and, to obtain an acceptable fault coverage
the set of chosen residues is overestimated. obtained result a and therefore requires that Instead, in this paper we show how using
an exhaustive fault injection campaigns allows to efficiently select the best set of residues. Experimental results coming from
fault injection campaigns on a 16 taps FIR filter demonstrated that by observing the occurred errors and the detection modules
corresponding to different residue has been possible to reduce the number of detection module, while paying a small reduction
of the percentage of SEUs that can be detected.

I. INTRODUCTION

The silicon integrated circuits trend is characterized by a steady reduction in the feature size combined with a steady rise
in density and speed [1]. A lot of new problems related to this incredible increase of complexity must be faced both from
the technological and the architectural point of view. In this scenario, both permanent and transient fault probability increases
limiting the silicon foundry yield and the reliability and availability of the implemented circuits. On the other hand, this trend
allows to use digital systems to perform very complex Digital Signal Processing (DSP) operations, where the requirements in
terms of speed and circuit complexity are very high, and the mandatory use of technologies with the best available feature
size implies the increase of the probability of fault occurrence. Many works have been published on the detection of faults in
arithmetic structures. In particular self-checking adders based on residue codes [2], [3], parity codes [4], or Berger codes [5]
have been proposed. For FIR filters the RRNS (Redundant Residue Number System) [6], [7], [8] representation allow to easily
detect a fault inside the filter. However, this approach have a serious drawback since it requires a certain area overhead for the
forward and reverse conversion between binary and RNS representation and, moreover, the self-checking properties must be
guaranteed also for these conversion circuits. The use of signed digit representation to detect fault in FIR filters is also possible
[9]. In this work the self-checking property of the FIR filter is obtained by using technique based on residue checking. The
detection of a SEU fault in an arithmetic block is performed by using some completely independent circuits that uses, as check
symbols, the residues of the operands modulo a suitable base. The choice of the best set of residues is performed by means of
a fault injection campaign. When the analysis of SEUs is the major concern, simulation-based fault injection approaches allow
an early evaluation of the system dependability when only the model is available. However, considering the large complexity
of such circuitry, a huge amount of CPU time may be required, thus limiting the number of faults that can be considered. Thus
simulation based approaches are not a suitable solution to exhaustive evaluate the fault tolerance capabilities of Self-Checking
circuits.

The usage of low cost commercial-off-the-shelf (COTS) FPGA devices for efficiently emulating a model of the system under
analysis has been explored in several works [10] [11].

In [12] the extension to the injection of transient fault is proposed, where an operating model of the system under analysis
is exploited. Although very efficient in reducing the CPU time needed for evaluating high numbers of faults, it mandates the
insertion of fault-injection-oriented features that modify the structure of the model and therefore it cannot be exploited for
evaluating self-checker circuitry.

The authors of [13] and [14] proposed alternative approaches to inject faults while emulating the system using FPGA devices,
where partial reconfiguration is employed to perform the injection of SEUs. The most important benefit stemming from these
approaches is that the source model of the system under analysis is not needed, while only a net-list suitable for being placed
in an FPGA is required. On the one hand, the intellectual property of the IP core is preserved; on the other hand, the SEE
analysis is performed on a model very similar to the one that will be employed in the final system, while in [12] the model
must be changed to insert the fault-injection-oriented features. The major drawback of [13] is the speed: being based on JBits
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[16] and on a slow communication interface between the board carrying the emulated system, and the host computer managing
the experiment, the number of faults that may be injected is quite limited. The authors reported that about 100 msec are needed
for injecting, and classifying the effect of one SEU.

The major drawback of [14] is the portability: a specific custom-developed board is needed to perform fault injection. The
system is very time-efficient (44 msec are needed for injecting and classifying the effect of one SEU), but it may be quite
expensive to implement.

In this paper, we used a fault injection technique able to perform injection campaigns in a fraction of the time that simulation-
based approaches require, thus supporting the execution of exhaustive fault injection campaigns. Furthermore, we used low-cost
commercial-of-the-shelf FPGA devices for efficiently emulating a model of the system under analysis.

The main contribution of our work consists in demonstrating that the usage of exhaustive fault injection analysis in conjunction
with the property of circuit’s modules, allows to improve the efficiency of the checker. This approach has been previously used
in [15] to optimize the design of a self-checking Reed Solomon decoder. In this paper we extend this approach to more common
applications related to the processing of multimedia data. The example taken into account is a Finite Impulse Response (FIR)
filter, but the combined approach of error detection using a residue checker and the optimization by means of fault injection
campaign can be easily applied to most of the applications related to the Digital Signal Processing. In fact, all these applications
use the basic arithmetic operations (addition and multiplication) used in the FIR filter and therefore can be checked using the
residue checking approach originally presented in [2]. The best set of residue assuring a high fault detection coverage can be
selected using the approach presented here.

The paper is organized as follows: in Section II a description of the fault injection environment is given. In section III the
checker modules based on the computing of the residues used to detect faults inside the filter are described, while section
IV describe the set-up and the results of the fault injection campaign and shows how these results are useful to improve the
efficiency of the proposed self-checking scheme. Finally, the conclusions are presented in section V.

II. FAULT INJECTION ENVIRONMENT

The fault injection system we developed is composed of the following modules: a host computer; an FPGA board equipped
with a Virtex II-Pro device, and a serial communication link to the host computer. The host computer is preliminary used
for configuring the Virtex-II Pro and for the generation of a fault location list. During the execution of the fault injection
experiment it only provides an user-friendly interface to run the fault-injection experiments and to collect the results in terms
of fault-effect classification.

Fig. 1. Architectural scheme of the proposed fault injection approach

The FPGA board is the core of the fault-injection system and its layout is depicted in Fig. 1. It is composed of four
components interconnected by an On-chip Peripheral Bus (OPB):
• Timing Unit: it drives the UUT clock and reset. The clock of the UUT has the same frequency of the FPGA device layout.

A port connected to the OPB Bus defines its functionality.
• Unit Under Test (UUT): it is the circuit under test and it may consist of an IP core and an own memory. The input and

output ports of the IP core are connected to the OPB Bus while the reset and clock signals are connected to the Timing
Unit.
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• ICAP: it is the Internal Configuration Access Port provided by last generations of Xilinx FPGAs. It allows the access to
the FPGA configuration memory through an internal port in order to perform partial reconfiguration without the support
of an external hardware. For the purpose of this work we configured the ICAP in such way that it is able to access to all
the memory elements (such Flip-Flops or Latches) of the UUT IP core.

• PowerPC microprocessor: it is hardwired in the FPGA device and it has two functionalities: At first, it performs the fault
injection of SEUs within the memory elements of the UUT IP core, and it communicates the fault-injection experiment
results to the host computer through a serial communication link.

The serial communication link is supported by a RS-232 cable that connects the FPGA board to the host computer.
The fault injection execution flow is a two-phase process composed of a preliminary phase followed by an execution phase.

The flow of the preliminary phase is illustrated in Fig. 2. This phase is automatically executed by the host computer using
either internal developed tools and commercial tools provided by Xilinx. The preliminary phase is executed following these
actions:
• The Unit Under Test is inserted within the FPGA device layout circuit description. This actions is performed by the UUT

Wrapper Inserting Tool that identifies the UUT input and output ports as well as the clock and reset signals. It generates
an UUT wrapper that is inserted within the FPGA device layout description linking the input and output ports with the
OPB Bus and the clock and reset signals to the Timing Unit.

• The FPGA device layout is compiled following the FPGA implementation tools chain provided by Xilinx. This action
returns a Native Circuit Description (NCD) file that contains all the information about the configuration of the FPGA
device.

• The BITGEN tool provided by Xilinx is then used to convert the obtained NCD file into a bitstream that is loaded within
the FPGA configuration memory. Besides, BITGEN is used to generate a Logic Allocation file that contains a list of all
the logic resources used within the FPGA.

• The Fault Location List Generator reads the Logic Allocation file identifying all the logic resources belonging to the
UUT IP core and generates a Fault Location List file where each fault location is characterized by an identifier of the
corresponding position of the flip-flop or latch within the FPGA.

Fig. 2. Preliminary phase of the fault injection execution flow

The execution phase of the used fault injection approach consists of several procedures included within a fault-injector
algorithm. The algorithm is executed by the PowerPC and it consists of three parts: pre-running, campaign and fault injection
results. The Pre-running starts the fault injection experiment. At first, it loads within the PowerPC memory the test patterns
that will be applied to the UUT and initializes the UUT IP memory (i.e. if the IP core is a processor the UUT IP memory will
be loaded with the desired program). Secondly, it performs a golden run of the UUT storing the total number of Clock Cycle
(CC) and the Golden Output (GO) produced. The Campaign performs the fault injection of the selected number of faults (NF).
The following steps are executed for the injection of each SEU:

1) The UUT is resetted and the Timing is configured in such a way that it sends a reset to the UUT.
2) A fault injection time (FT) and a fault location (FL) are randomly selected considering the number of clock cycle CC

and the set of FL available.
3) The execution of the UUT is started until it reaches the clock cycle FT. This operation is performed by configuring a

Timing Unit’s terminal counter at the FT value.
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4) The fault location FL is read. This procedure reads directly the content of the flip-flop or of the latch from the configuration
memory through the usage of the ICAP port.

5) The bitstream of the FPGA is partially reconfigured writing the opposite value within the content of the flip-flop or
latches identified by FL. Therefore a SEU is injected in the considered fault location.

6) The execution of the UUT is continued until CC is reached. During the execution, it monitors the UUT output ports
reading the data on the RS-232 interface and comparing their value with the UUT golden outputs. It finally updates a
fault classification list (FCL) with the results obtained by the fault injection and classifying each injected SEU as silent,
if the output produced by the UUT are equal to the GO; or wrong answer, if a mismatch was detected.

III. DETECTION OF FAULTS IN THE FIR FILTER

In this section the implementation of the FIR filter and of the blocks performing the modulo based error checking are
described. The equation of a FIR filter is:

y(n) =
P∑

k=0

ak · x(n − k) (1)

where x(n) and y(n) are the input and output sequences, and ak are the filter coefficients. If no truncations are performed
in the hardware implementation of the FIR filter the error detection can be done computing the residue modulo m of y(n)
directly starting from the residue modulo m of the input sequence x(n). The result obtained by this computation can be seen
as a check symbol to be used to detect fault inside the filter. In Fig. 3 an implementation of this basic scheme is presented,
where the operations performed by the block computing < y(n) >m are performed modulo m. The block named equality
checker can be implemented as a two-rail equality checker [17], [18] in order to avoid undetectable fault inside this block.

Fig. 3. Error detection scheme for a FIR filter

Considering this structure, the check symbol is able to detect a fault inside the filter only if the erroneous value caused by
the fault is characterized by a check symbol that is different from the ones of the fault-free operation. This condition is verified
when no aliasing between the modulo m of an erroneous result and the correct one occurs. Starting from the equation (1) we
can write

< y >m 6=< y + e >m=> < e >m 6= 0 => e 6= k · m (2)

Where < · >m is the modulo m operation, y in the output of the filter and e 6= 0 is the error generated by a fault in the filter.
The last implication means that the error is not a multiple of the chosen modulo base m. The probability that the no aliasing
condition is respected depends by different factors such as the value of the filter coefficients, the filter implementation and the
assumed fault set. The probability that no aliasing occurs can be increased by using a set of different moduli m1,m2 . . .mn

and comparing in parallel the different check symbols obtained. It must be noticed that the no aliasing condition is verified for
almost one of the modules (and therefore the fault can be detected) if and only if the same condition is verified for a module
M = lcm(m1,m2 . . .mn), where lcm is the least common multiplier of the set of moduli. The proof of this claim can be
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easily done using the Chinese Remainder Theorem. A overestimation of the moduli set that assure the detection of all the faults
inside the filter is given by a set of moduli m1,m2 . . .mn which have as lcm a number greater than the dynamic range of
the filter output. In fact, if we use N bits for the signed binary representation of the y output the error is constrained to be in
the range −2N−1 ≤ e < 2N−1 and the no aliasing condition is satisfied if M is greater than 2N . In section IV is shown how
the fault injection campaign allows to reduce the magnitude of M (and therefore the set of modules m1,m2 . . .mn) paying a
small reduction of the percentage of SEUs that can be detected.

IV. EXPERIMENTAL SETUP AND FAULT INJECTION RESULTS

In order to perform the fault injection campaign on a 16 taps FIR filter with coefficient and input length of 8 bits and output
length of 20 bits, the hardware blocks that has been designed and implemented on the Xilinx FPGA are:

1) The 16 taps FIR filter,
2) a Linear Feedback Shifter Registers (LFSR) that act as pseudo-random number generators, providing the input data x

for the filter,
3) a set of blocks providing the input modulo reduction < x >m for the set of bases used for the analysis,
4) a set of modulo mi FIR filters in which the addition and multiplication operation are performed modulo mi.
5) a set of blocks providing the filter output modulo reduction < y >m for the set of residues used for the analysis
6) a set of blocks comparing the results of the output < y >m with the corresponding output of the FIR filter that perform

the modulo mi operation. These blocks provide as outputs the signals out1 . . . outn signaling if an error has been detected
by the corresponding mi module.

The set of moduli used to perform the analysis is 3,5,7,9,11,13,15,31 with lcm(3, 5, 7, 9, 11, 13, 15, 31) > 220. The use of the
complete set is therefore able to detect all the faults inside the filter. Fig.4 shows these blocks and their interconnections.

Fig. 4. Set-Up for fault injection

The experimental campaigns were based on evaluating the self checking FIR filter dependability and observing the fault
detection capability of the adopted self-checker. For these purposes, we performed a fault injection campaign able to inject in
a random fault injection time and in a random fault location of the filter 124,289 SEUs, corresponding to 100,000 activated
faults. During the execution of the fault injection experiment we fixed the total number of clock cycle (CC) to 20,000 and the
fault injection time (FT) at a random clock cycle between 0 and 19,000. The outputs out1 . . . outn has been monitored and
we assume that the fault is activated if at least one of the outputs of the UUT differs by the corresponding output obtained
during the golden run and therefore we associate the fault detection with the corresponding module.

The results achieved from the fault injection campaign report that for the 100,000 activated faults the complete set of moduli
detects 99993 faults, corresponding to a fault coverage up to 99,99%. We examined the output of each detection module
obtaining the results shown in table I,where in the first column is reported the name of the module corresponding to the
monitored output.

As the reader can observe, the element performing the operation modulo 15 is able to detect almost all the fault injected in
the FIR filter. Therefore the designer can use only this module avoiding the use of the other modules reducing the overhead of
the filter and paying only a small reduction in terms of fault detection coverage. To improve the fault detection coverage we
also compute the percentage of faults detected by some subset of modules. In particular we focus the attention on the modules
that yet alone have an high percentage, namely 15,11,9,7. The fault detected by the couples 15, 11,15, 9, 15, 13 and 15, 7 and
by the triples 15, 13, 11, 15, 11, 9, 15, 11, 7 are reported in table II.
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Module Detected SEUs Detected SEUs [%]
M3 3874 3
M5 47334 47
M7 91574 91
S9 95083 95
S11 97416 97
S13 87908 87
S15 99632 99
S31 2895 2

TABLE I
FAULT COVERAGE OF A SINGLE MODULE

Module Detected SEUs Detected SEUs [%]
15, 11 99991 99.99
15, 9 99979 99.97
15, 13 99944 99.94
15, 7 99966 99.96

15, 11, 13 99993 99.99
15, 11, 9 99993 99.99
15, 11, 7 99993 99.99

TABLE II
FAULT COVERAGE OF MODULES PARTITION

From this table we can see that using one of the subsets 15, 13, 11, 15, 11, 9, 15, 11, 7 we can obtain the maximum fault
detection coverage, while using only the two modules 15, 11 we detect obtain 99991 faults. These results allow to identify as
completely unnecessary some modules, namely the modules 3, 5, 31, while only a subset of the other modules is necessary to
obtain the maximum fault detection coverage.

V. CONCLUSIONS

The results presented in this paper shows how a fault injection analysis of a complex structure allows to identify which kind
of errors are more probable to occurs due to a fault inside the circuit under test. This analysis is very useful for designing the
additional modules that allows to implement a self-checking version of the circuit under analysis. In particular, for structures
with well defined arithmetic properties, such as the FIR filters, this campaign allows to identify which blocks must be added
avoiding the overestimation of the possible fault effects.The results presented shows that some modules can be excluded from
the self-checking scheme with a very little reduction of the fault tolerance capabilities. An extensive fault injection campaign in
a fast and flexible environment is necessary to improve the efficiency of self-checking structure. The fault injection technique
used in this paper allows to perform exhaustive injection campaigns on very complex structure in a incomparable less time
than simulation-based approaches. Moreover, it uses a low-cost commercial-of-the-shelf FPGA devices and do not requires
modification in the internal structure of the circuit under test. This a mandatory characteristic because the proposed use of the
fault injection analysis and the obtained optimization are very dependent on the internal structure of the circuit.
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