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Abstract

Many techniques have been proposed in the technical literature for repairing FPGAs when affected
by permanent faults. Almost all of these works exploit the dynamic reconfiguration capabilities of an
FPGA; a subset of the available resources is used as spares for replacing the faulty ones. Initially
in this paper, a survey of these techniques is presented; subsequently, a framework is proposed for
these techniques by which a fair comparison among them can be assessed and evaluated with respect
to reliability. A reliability evaluation is provided for different repair strategies under the assumption
that the area overhead is constant. Moreover, considerations about time to repair and feasibility of
these techniques are provided. The ultimate goal of the paper is therefore to present the state-of-
the-art repair techniques as applicable to FPGA and to establish their performance for reliability.

1 Introduction
FPGAs are widely used for rapid prototyping and realizing low cost, yet complex digital systems.

The reprogrammability feature of these chips can be extremely useful to circumvent defects as well
as faults. The modular structure of an FPGA allows to reprogram it by replacing defective/faulty
logic resources (usually referred to as a block) with a fault-free spares, once detection has occurred.
This feature assures a high degree of fault tolerance, even in extremely hostile applications, such as
space or radioactive environments. Commercial FPGAs can be fully tested prior to programming.
Implementation of off-line and on-line testing is made possible using dedicated capabilities readily
applicable in the FPGAs. However, due to the pervasive use of these chips in critical applications,
there is also a substantial interest for digital systems with on-line testing capabilities. Permanent
and transient faults can be detected and localized using different testing techniques. The alloca-
tion of some resources in the FPGA as spares can be used to replace faulty/defective resources
once a permanent fault is located. The replacement of faulty resources can be accomplished by
reprogramming the FPGA with an alternative configuration that preserves the logical functionality
but utilizing a set of fault-free resources (and by excluding the faulty ones). The scheme by which
spare resources are allocated inside the FPGA (and consequently the reconfiguration algorithm),
is closely dependent on the type of FPGA that is utilized in a specific application. The use of a
partial configuration process can drastically reduce both the mean time to repair and the size of the
precompiled bistream that is usually stored for the alternative configuration of the FPGA.

The interconnection structure of the FPGA is an important parameter that must be considered
for selecting an efficient spare allocation strategy that fully utilizes the FPGA architecture. Different
techniques on this topic have been presented in the literature; however, a fair comparison between
them and a metric for evaluating their performance has not been fully investigated. The objective
of this paper is to present a review of the state-of-the-art repair models available for FPGAs. A
reliability assessment of these models is then pursued and finally a comparison of their performances
is presented. This paper is organized as follows: Section II presents a generic FPGA architecture
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and the considered fault model, Section III introduces and analyzes the different repair models.
Section IV presents the reliability evaluation of the repair models. A comparison of the models is
provided in Section V. Finally, conclusions are drawn in Section VI.

2 FPGA Architecture and Fault model
A FPGA can be viewed as an array of Complex Logic Blocks, CLBs (usually made of by a Look-

up table and a Flip-Flop) that are connected by so-called routing resources. Routing resources
consist of programmable switch matrices (PSMs), as shown in fig. 1.

Figure 1. Generic structure of an FPGA

The use of an FPGA in radioactive environments (such as space) may result in the occurrence of
faults: the release of charge from high energy particles can induce couples of electron-holes in the
substrate, such that current spikes can be generated and transient faults (Single Event Upsets or
SEU) may appear; the accumulation and impact of heavy particles can cause lattice modifications,
such as displacement or doping, thus permanently modifying the electrical characteristics of the
semiconductor material (this effect is commonly known as the Total Ionizing Dose or TID and can
cause permanent faults to appear in a circuit, such as stuck-at faults). In this paper, the latter
effect is considered and it is assumed that the effect of TID causes the complete failure of the CLB
in which this fault appears. Moreover, no TID effects are considered in the routing resources of the
FPGA. The objective of this paper is therefore to evaluate the effects of the accumulation of TID in
an FPGA as modeled by a failure rate λ. For fault tolerance and reliability of an FPGA, a subset of
CLBs is reserved as spares. They are used to replace faulty CLBs, thus preserving the functionality
of the implemented system in the presence of faults. The choice of the CLB subset is closely related
to the interconnection structure of the FPGA. A survey of interconnection strategies can be found
in the technical literature (e.g. [1],[2]); for this paper, some of the assumed conditions are outlined.

• The interconnection structure of fig. 1 is referred to as fully segmented interconnected, because
each wire is segmented into sub-wires connecting CLBs on a nearest neighbor basis. To
connect two non-neighboring (distant) CLBs, all segments of the wire in the path between
the CLBs must be programmed to route the signal across the programmable switch matrices
(PSMs). This structure ideally allows for an high level of flexibility in the selection of CLBs
for spare allocation; however it has some serious drawbacks. For example, fully segmented
interconnections are not commonly used in an FPGA with an high number of CLBs, because
performance (in terms of propagation delay) is dependent on the number of traversed PSMs.
In a large FPGA, this number can be too high, significantly degrading the performances.
Moreover, the reprogramming process for a signal path between PSMs is not a simple task,
and routing can be very difficult when the logic replacement of a faulty CLB requires a
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complicated strategy to find the path.
• Another type of interconnection structure is presented in fig. 2. In this structure, the first

hierarchy level of interconnection resources allows to connect the nearest CLBs. For connecting
distant CLBs, interconnections of the second level of the hierarchy must be used to reduce the
number of PSMs that the signal must traverse. This structure can efficiently utilize the tile
and hierarchical spare allocation strategies described in section III. The number of CLBs in a
block (tile) and the distribution of spares in the hierarchy are decided as a consequence of the
interconnection hierarchy of the FPGA.

Figure 2. Structure of an FPGA with hierarchical routing

• The last interconnection structure that is reviewed in this paper, is based on a partial (not-
fully) segmented approach, in which a wire is divided into sub-wires that span between various
CLBs, as shown in fig. 3. This interconnection structure can avoid the problems associated
with rerouting using long paths, provided the spare and the faulty CLBs are located on the
same segment of the wire. Also in this case, the tile-based approach can be easily utilized and
the characteristics of the spare allocation process (as related to the number of CLB and the
number of spares in a tile) are determined by the interconnection structure.

Figure 3. Structure of an FPGA with non segmented routing

Another feature to consider when selecting a repair strategy, is the reprogramming protocol of
the FPGA. Two different methods for partial reconfiguration are reviewed in this paper.

• The first method is used by the Atmel AT40K FPGA, [10] and allows to identify the resources
of the FPGA to be reprogrammed using a set of control registers. The control registers select
the row and the column of the resource to be reconfigured. After programming the control
registers, the new configuration of the specified resources can be uploaded using yet another
control register. This reprogramming strategy allows for a very fast reprogramming and fine
granularity in partial reconfiguration. In [10] this feature is used to realize a tile-based spare
allocation for the AT40K FPGA.

• The second reprogramming strategy considered in this paper is the one used by Xilinx; this
strategy divides the resources to be reprogrammed in columns, thus providing a granularity
higher than the one used by the Atmel FPGAs. The column-based scheme is shown in fig. 4.
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This reprogramming strategy allows to implement the spare allocation strategy of [4] and is
referred to as coarse repair in the next section.

Figure 4. Column-based partial reprogramming of an FPGA

3 Repair models
To repair a permanent fault in an FPGA a four step algorithm can be used. These steps (shown

in Fig. 5) can be summarized as follows.

Figure 5. Flow chart of the four-step algorithm

• Step 1. The first step of the algorithm deals with detection. Prior to starting reconfiguration,
detection of the fault in the FPGA must take place. Detection of a fault is usually achieved by
using self-checking circuits. The application to be implemented in the FPGA is divided and
embedded into various self-checking circuits to allow the detection of a fault inside a single
self-checking unit. The granularity by which the fault is detected, is measured by the number
of CLBs (usually in the order of few hundreds). A detailed step for fault location is needed and
is performed in the third step of this procedure. Another method to achieve fault detection has
been presented in [5]. Detection of a permanent fault is achieved by continuously executing an
off-line test on a subset of the FPGA; these CLBs are grouped in blocks referred to as the ”
roving self-testing areas”’ (STARs). The remaining part of the FPGA continues operating as
per its normal functionality. After completing the test, the FPGA is reconfigured to perform
the off-line test for another subset of STAR, while the application is remapped. This method
allows to automatically correct a transient fault on the configuration memory of the FPGA,
because the chip is continuously reconfigured, and detection has a very detailed granularity
(usually approximately six CLBs). The main drawback of this method is the time between
fault occurrence and detection (latency); this depends on the product of the time needed to
perform a test on a STAR and the number of subsets in which the FPGA is divided. Due to
latency, there is no guarantee of correctness of the implemented functionality.
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• Step 2. This step allows to discriminate between transient and permanent faults. When
the checker detects the occurrence of a fault, a refresh of the configuration memory of the
FPGA takes place. This procedure corrects any occurrence of a transient fault in the FPGA.
Therefore, as soon as the configuration has been restored, the timer controlling the MTBF
is initialized to discriminate permanent from transient faults. Moreover, if two errors are
revealed at the same position in a time interval smaller than the MTBF, it is assumed that
they are related to the presence of a permanent fault. In this case, Steps 3 and 4 are executed.

• Step 3. If a permanent fault is detected, a fault diagnosis routine is executed to locate the fault
with a granularity better than the one provided by the partition of the circuit into self-checking
units. Various methods for locating a faulty CLB have been proposed in the literature (the
interested reader should refer to [6],[7],[8]).

• Step 4. In the last step, the replacement of the faulty CLB is performed. The possible repair
mechanisms depend strictly on the architecture of an FPGA. Different methods and associated
models can be used depending on the partial and dynamic reconfiguration capabilities of the
FPGA, the structure of the bitstream for reprogramming the chip and the structure of the
interconnection resources. In this paper, they can be differentiated as follows:

1. Hierarchical Model: two hierarchical levels of redundancy: at the lower level the FPGA
is organized in tiles, each tile is made of spare CLBs; at a higher level, the faulty tiles
can be replaced with spare tiles [9].

2. Optimal Model: the spare CLBs of the FPGA can be used to repair any faulty resource
in the device; this represents the best possible case and it does not take into account any
of the problems associated with rerouting.

3. Coarse redundancy Model: The used and spare CLBs are lumped in tiles [3] or columns,
and they are all allocated for repair [4].

4. Tile-based Model: the FPGA is divided into tiles, each tile contains a spare CLB that
can repair only a faulty CLB in a tile [9].

The hierarchical model is the most general whereas the other three models are effectively
subcases. In fact the optimal model can be considered as the lower hierarchical level while the
coarse redundancy model has spares only on the higher hierarchy level. Finally, the tile based
model has redundancy only at the lower hierarchy level.

3.1 Hierarchical redundancy
This approach refers to the more general case of the repair models as described below. For the

reliability analysis of the tile-based approach, some faults are unrepairable. For example, two faults
on the same tile of the types shown in Figure 6 can not be repaired. To solve this problem while
maintaining the other characteristics, the tile-based approach must utilize additional spare tiles [9].
The spares can be used to facilitate repair in cases such as multiple faults in a tile and faults in
the interconnection resources that could not be repaired in the original tile-based approach. This
second level of redundancy is effectively a coarse spare allocation and therefore this solution has the
characteristics of the coarse and the tile-based approaches.

3.2 Optimal model
In this model, a spare CLB can be used to repair any faulty CLB in the FPGA. The assumption of

this model is that rerouting is always possible. This approach is quite independent of the structure
of the FPGA to be repaired, but it has some drawbacks in terms of both time to repair and size of
the precompiled bitstreams. In this case, the use of precompiled bitstreams is mandatory, because
rerouting of the resources can involve the whole FPGA and therefore the complete place-and-route
algorithm must be executed. This is very time consuming and in most application it cannot be
performed on-line. It must be executed at compile time, and suitable methods must be be developed
to reduce the size of the precompiled bitstream. Finally, if this method is applied on an FPGA that
does not allow partial reconfiguration, the mean time to repair is the same as other techniques as
discussed below.
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3.3 Coarse redundancy
The spare CLBs are lumped in tiles [3] or columns and are all allocated for repair [4]. When a

fault is detected in a column, the whole column is marked as faulty and it is replaced by a spare. This
approach exploits the reconfiguration partition of a bitstream as used by Xilinx FPGAs; therefore,
the reconfiguration procedure can be performed fast and an algorithm can be developed easily.
Moreover, due to the coarse granularity of this approach, the step of the reconfiguration algorithm
outlined below can be implemented easily because the level of granularity in the fault location
procedure can be lower than the one required in a different approach. The drawback of this solution
is that when a fault occurs in a CLB, also other fault-free CLBs in a tile must be marked as unusable.

3.4 Tile-based model
With this technique the FPGA is divided in small partitioned blocks that have fixed interfaces

to the others tiles. Diagnosis must locate the faulty resource with a granularity better than the
dimension of a tile, such that faulty resources can be replaced with the spares in the tile. Reconfig-
uration of a tile must preserve the original functionality in new mapping; also, the interconnections
between the perimeter of the tile and the remaining part of the FPGA must be unaffected by the
configuration process. This technique reduces post-fault-detection downtime, while requiring a small
area overhead. Only, the finely located faulty parts of the FPGA are logically removed. The new
configurations can be generated at design-time and must be in memory. Each tile is made of a set
of FPGA resources (CLBs and interconnections) through an interface specification that defines and
binds the interconnections with other tiles in the same FPGA. The use of a tile interface allows
not to propagate to other tiles the reconfiguration process for repair, thus reducing the storage
overhead. This procedure allows to repair either CLB and local interconnect faults; faults in the
global interconnect require a different approach, because this interconnect traverses tiles and their
perimeter, thus making tiles dependent on each others. The structure of a tile is dependent on
the interconnection structure of the FPGA. In [9], different tile structures have been presented for
diverse FPGAs. Figure 6, shows a tile made of four CLBs. Three of the four CLBs are used for
processing while the forth CLB is reserved as a spare. When a fault is detected on a CLB, the tile
is reconfigured to exclude the faulty CLB. For an FPGA (such as the one used in [10]) a structure
similar to Figure 6.b), must be used. The Atmel FPGA uses diagonal interconnections and there-
fore, the structure proposed in Figure 6.b is better than the one of Figure 6 for assembling a tile
(see [10] for details).

Figure 6. a) A tile forming a block (b) A tile that exploits diagonal interconnections

4 Reliability evaluation
In this section, reliability models for the above introduced repair approaches are proposed. The

models are combinatorial and calculate the probability of repairing a fault at time t based on the
assumption that the repair process requires a negligible time to execute (this assumption permits
to avoid the use of a Markov model that is needed when the repair time is not negligible).

4.1 Hierarchical redundancy
The reliability of hierarchical repair can be considered at two levels. At a high level, the probabil-

ity that an FPGA with a tile-based approach is operational in the presence of no more than g faulty
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tiles (g is also defined as the number of spare tiles in the FPGA). At a low level, the probability of
an operational tile is the probability that no more than n CLB are faulty (where n is defined as the
number of spare CLBs in a tile).

Therefore at the high level of hierarchy, the probability that the FPGA operates correctly is given
by

Rov(t) =
g∑

i=0

(
m

i

)
Rtile(t)m−i(1 − Rtile(t))i

where m is the total number of tiles. At low level (similar to the previous case), the reliability is
given by

Rtile(t) =
n∑

i=0

(
l

i

)
RCLB(t)l−i(1 − RCLB(t))i

where l is the number of CLBs per tile.

4.2 Optimal repair
In this case, the reliability is also a bound. As every CLB can be substituted by a spare, the

reliability of an FPGA with N spare CLBs can be expressed as the probability of having up to N
faulty CLBs. Consider an FPGA made of M2 CLBs and define the reliability of a CLB as RCLB(t).
As the probability of failure at time t is pf (t) = 1 − RCLB(t), then the reliability is

Rov(t) =
N∑

i=0

(
M2

i

)
RCLB(t)M2−i(1 − RCLB(t))i

4.3 Coarse redundancy
In this model, the allocation of the spare resources is not optimal. A faulty CLB can be sub-

stituted by a whole tile, so the reliability of a FPGA with g spare tiles can be expressed as the
probability of having up to g faulty CLBs in the FPGA. Consider an FPGA with M2 CLBs, as
above define the reliability of a CLB as RCLB(t) and consider that the probability of failure at
time t is pf (t) = 1 − RCLB(t), therefore the overall reliability is:

Rov(t) =
g∑

i=0

(
M2

i

)
RCLB(t)M2−i(1 − RCLB(t))i

4.4 Tile-based repair
Similar to the hierarchical model, the reliability of tile-based repair consists of two levels. The

probability that an FPGA with a tile-based repair approach can be computed as the probability that
all tiles are operational (high level) while the probability that a tile is operational is the probability
that at most n CLB are operational (n is the number of spare CLBs in a tile) (low level). This
can be expressed analytically as follows: define Rtile as the reliability of a tile at the high level; the
overall reliability is a series expression, i.e.

Rov(t) =
k∏
i

Rtile(t) = Rk
tile(t)

where k is the total number of tiles in the FPGA and the second equality is caused by the
reliability of all the tiles being the same. At low level, the reliability of a tile is

Rtile(t) =
n∑

i=0

(
l

i

)
RCLB(t)l−i(1 − RCLB(t))i

where l is the number of CLBs per tile. Therefore, by combining these two expressions

7

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00  © 2006



(a) (b)

Figure 7. Comparison of Repair methods: (a) as function of λ × t (b) as function of
R(t)

Rov(t) = [
n∑

i=0

(
l

i

)
RCLB(t)l−i(1 − RCLB(t))i]k

5 Comparison
In this sections the repair models are compared using the reliability analysis of the previous section

and as function of both lambda × t and the reliability of a single CLB R(t). Using lambda × t, the
results are not a function of a specific value of the failure rate and it allows for a broader analysis.
Using R(t), the results are also made independent of the reliability, i.e. this analysis would also
account for a non exponential behavior of R(t).

The examples assume that the allocated redundancy is 25% of the overall number of CLBs in
the FPGA. In the simulation, the parameters are for a square FPGA with M=100 (number of
rows/columns) and thus, the total number of CLBs is M2 = 10.000.

The previously presented repair methodologies are defined as follows:

1. optimal repair: (3/4) × M2 = 7500 CLBs used and (1/4) × M2 = 2500 spare CLBs
2. tile repair: each tile has 4 CLBs, therefore there are 1/4 × M2 = 2500 tiles; in a tile three

CLBs are used while one CLB is a spare.
3. coarse repair: M=100 columns, each column consists of 100 CLBs, 75 of these columns are

utilized and therefore 25 columns are spares.
4. hierarchical repair: each tile has 5 CLBs and therefore there are 1/5 × M2 = 2000 tiles. In a

tile, 4 CLBs are used and one CLB is spare (level 1). At level 2, there are 1875 used tiles and
125 spare tiles. The total number of spare CLBs is 125×5+1875=2500

Simulations have been performed using Matlab and plotted to compare the performance of the
different methods. Figure 7 shows all repair methods as a function of lambda × t and R(t); as
expected, the reliability obtained using optimal repair outperforms all other methods (hierarchical
repair is also a viable alternative).

As a high failure rate or a long mission time are only encountered in some applications, for a
better understanding of the behavior of the repair process for small values of λ×t and high values of
R(t) the results are shown in Figure 8. Figure 8 shows that for a range of λ× t values (or in general
for high values of R(t)) the reliability with coarse repair outperforms tile-based repair; however,
once λ× t increases (R(t) decreases), then the reliability of the former repair drops (accounting for
lack of spares), while the latter repair method smoothly decreases (accounting for a better allocation
of spares).
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(a) (b)

Figure 8. Comparison of Repair methods: (a) low values of λ × t (b) for high values
of R(t)

6 Conclusions
The repair of permanent faults in FPGAs has been extensively proposed in previous works,

however little comparison has been reported on the different repair techniques made available for
FPGAs. This paper has reviewed these repair techniques and provided a comparison of their
characteristics by utilizing an uniform reliability model with an equal spare allocation. Different
reliability figures have been obtained both in function of the λ × t product and the reliability of a
single CLB R(t); this has permitted to evaluate performance; the results have shown the superior
performance of an optimal repair model (albeit it has practical limitations due to complex rerouting
in terms of execution time and complexity). It has been also shown that the reliabilities for coarse
and tile based redundancy techniques offer a balanced trade off that can be assessed with respect
to the desired application.
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