
Design and Evaluation of a Hardware on-line Program-Flow
Checker for Embedded Microcontrollers

M. Ottavi*, S. Pontarelli, A. Leandri, A. Salsano
Dipartimento di Ingegneria Elettronica

 Università di Roma “Tor Vergata”, Italy
*Electrical and Computer Engineering Department

Northeastern University Boston (MA) USA
{ottavi, pontarelli, salsano}@ing.uniroma2.it

Abstract
This paper investigates the effects of a class of transient faults, the so-called Single Event

Upsets, on the execution of programs in typical microcontroller architecture as can be found
on a system on chip for embedded applications. It is observed that the consequences of
targeting the registers used in the control flow can cause unexpected jumps of the program
and consequent heavy effects on the results or the freeze of the microcontroller. A novel
hardware based control flow checker is then introduced and implemented on an FPGA test
bed together with the microcontroller core and fault injection circuitry. The FPGA
implementation allows to dynamically and quickly injecting faults on the microcontroller
whereas the results of the fault injection campaign allow to evaluate the fault coverage of the
proposed method with a high degree of flexibility.

Keywords: Microcontrollers, Fault Injection, Program-flow checking, FPGA, Partial reconfiguration

1. Introduction
In recent years the continuous trend of increasing the integration to a system level has led

to the introduction of more and more complex devices. New devices proposed by many
suppliers are today implementing different functional cores such as microcontroller, FPGA,
memory blocks (RAM, ROM, EEPROM, Flash), analog interfaces and more, and are
commonly referred to as “system on a chip” (SoC). SoCs have typical application in
embedded systems and therefore it is worth to consider their reliability with respect to the
occurrence of possible faults. In particular a class of transient faults also known as Single
Event Upset (SEU) is becoming more and more important with the reduction of the feature
size of the transistors and the consequent reduction of their critical charge. In particular it has
been shown that radiation at sea level can induce effects on a device modeled in most of the
cases as an inversion of a logic value stored in a memory element and called “bit-flip”. [18]
notes that starting from the 0.13 micron process it will be observed a bit flip every 10 days for
a 128 Mbyte SRAM at sea level.
The problem of reliability of SoC microprocessors with respect to the SEUs is closely related
to what already studied for applications in harsh radioactive environments, such as space or
nuclear plants and in particular to the usage of Commercial Off the Shelf Components for
these applications [19]. However if the interest into using Commercial Off The Shelf (COTS)
components in space application could be an interesting alternative to rad-hard components
due to their low cost and high performances, in embedded computing the usage of rad-hard
technologies would just be unfeasible for its uneconomical impact.
Although we are focusing on the transient faults it should be noticed that in general the
effects of radiations are divided in permanent and transient faults, where the permanent faults
can be considered an accelerated ageing and are related to the total time that a device spends
under radiation (TID: Total Ionizing Dose) while the transient faults are instantaneous and are

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

related to the energy and charge of the impacting particles (SEU), also for this randomness of
their occurrence in time SEU represent presently one of the most interesting fault types due to
the radiation effects on integrated circuits [1][2].

Obtaining high reliability without the expensive rad-hard fault avoidance techniques
requires the introduction of fault-tolerant techniques and therefore hardware and/or software
overhead to obtain error detection and system reconfiguration. An approach based on
hardware redundancy like a typical NMR (N-Modular Redundancy) could be straightforward;
however its consequences on power consumption and area occupation and the consequent
manufacturing cost induced us to pursuing the use of on-line testing methodology that is
discussed in this paper with specific focus on control flow check.
Well-known fault injection techniques allow perturbing the normal function of the system
under study to evaluate the SEU effects. The results of such experiments are an indispensable
feedback to the designer of fault tolerant systems in order to implement efficient techniques
of fault detection and system recovery or fault masking.
We applied fault injection techniques to an 8051 microcontroller and evaluated the kind of
errors obtained during the execution of a set of test programs. The choice of the 8051 is in
line with a very well established previous literature [3][4][14][15][17] and allows a common
ground of comparison for the results, moreover the 8051 is a rather simple but at the same
time diffused architecture and the studies on it can be easily extended to other
microcontrollers. Since we did not target any specific SoC architecture, we simulated it on an
FPGA platform that implemented the IP core of the 8051, the proposed control flow checking
hardware and the specific fault injection circuitry. The usage of an FPGA based fast
prototyping platform introduces advantages both in the speed of the simulations and in the
high degree of accessibility to the inner hardware registers of the IP core as compared to
software based fault injection strategies [17].
We observed that SEU events had different effects on the system depending on the time and
the location in which they occur [3], we also observed that some bit-flips have no
consequences on the program execution, because they occur before a valid value is
written, while a bit-flip occurring in the data registers can give consequences on a little
portion of the outputs of the test programs. However we also observed some bit-flips
can cause critical effects on the test programs resulting in a complete freeze of the
system where the 8051 is embedded. These errors are caused by bit-flips in the memory
elements involved in the control of the program flow. Therefore, the checking of the
control flow of a microcontroller assumes a very important role in order to avoid the
total loss of the functions performed by the system.
The increasing diffusion of integrated IPs suggested to opt for hardware based flow
control check as opposed to the more widely studied software based flow control check
[15][16]. Hardware solutions with embedded IP cores of microcontrollers and FPGAs
are now a very common product offered by vendors. The benefits of hardware based
flow control check are both in performances and ease of implementation as with its
introduction the flow control checker does not cause any perturbation on the normal
execution of the program by introducing modification to the executed code. Moreover it
will be shown that also the hardware overhead introduced with hardware checkers can
be kept low by introducing signature analysis to obtain output compaction.
The goal of this paper is to introduce an innovative hardware flow control checker for
embedded microcontrollers and to test its performances.
To expedite the analysis and to obtain a high degree of flexibility we also introduce and
describe an ad-hoc developed hardware fast prototyping platform implemented on a Xilinx
Virtex FPGA together with the 8051. The proposed solution is validated injecting SEU-like
faults during the execution of the test programs.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

The paper is organized as follows. In section 2 we discuss the SEU effects on program
execution flow. Section 3 describes the structure of an instruction level signature
analysis checker. Section 4 describes the FPGA implementation of an 8051 and its
checker. In section 5 we show the test-bed used for the validation of the methodology
and the obtained values of fault coverage are presented in section 6. Finally,
conclusions are drawn in Section 7.

2 SEU effects on program execution flow
The SEU effect on the execution of a set of programs running on the 8051 microcontroller

has been evaluated in terms of their sensitivity to the bit-flip injected [3] while the actual
sensitivity of the 8051 hardware memory elements has been measured through the execution
of a static test under radiation [4]. From the tests under radiation is derived the so called
cross-section (eq. 1) which gives a probabilistic estimation of the number of particles needed
to get a bit flip on a particular target.

σSEU= # detected errors / particle fluency (eq. 1)

Instead, from the fault injection experiments it can be estimated the program error rate as a
function of the number of injected bit flips leading to error in the execution of a given
program normalized by the total number of injected bit flips (eq. 2).

τ = # detected errors / # injected errors (eq. 2)

Therefore combining he previous two equations, the sensitivity to SEU of a program can be
calculated by the product of the cross-section by the error rate to injected bit flips (eq.3):

τστ *SEUSEU = (eq. 3)

The multiplication of the static cross-section by the error rate derived from fault injection
represents a good estimator of the rate of detected errors normalized by the number of
particles, which is the definition of the error rate under radiation for a given application. In
this way, once the SEU static cross-section is measured from a suitable radiation ground
testing experiment, the evaluation of error rates for different application programs can be
done without exposing the circuits to radiation, significantly saving time and economic
efforts. In [3] we proposed an initial estimation of τ obtained by using two fault injection
methods that considered as targets of injection all the Special Function Registers of the
microcontroller and the 128 bytes internal memory registers.
The first considered method injects faults by executing suitable pieces of code and is called
CEU (Code Emulating an Upset) technique [5] [6] the second method instead uses an HDL
model of the device [7], for which code modifications are implemented in order to virtually
change run-time every part composing the device. The two models were in accordance (Table
1) and showed that the sensitivity to bit flips resulted strongly related to the executed
program. Bit flip faults were injected run-time during the execution of two benchmark
software applications: a bubble sort of an integer vector and a 6x6 matrix multiplication
program.

CEU Injection VHDL Injection
Matrix Multiplication 48,8% 48,71%
Vector Sorting 26 % 22,14%

 Table 1: Error rates factors obtained by fault injection for the two benchmark programs

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

The error rates reported could be considered as the set of all SEUs that, during test bench,
produced a difference on an output port of the design, i.e. the failure set as in [8] [10]
A more detailed analysis of the results showed that the errors detected during the
experimental phase can be related to different causes.
In particular we noticed that the occurrence of bit flips in the memory locations devoted to the
program execution control like: Program Counter register, Data Pointer Transfer Register,
Stack Pointer Register, Program Status Word Register, Stack Area, caused random jumps in
the program flow execution. The effects of these random jumps depend on the time and on
location in which the bit-flips occurred.
In general we deduced that the injection of bit flips in the registers devoted to the program
control will cause more sensitive consequences as opposed to isolated effects on result
integrity. Since the effects of errors in the flow control are more catastrophic and span from
some erroneous results (result errors) to the total freeze of the microcontroller and the
consequent lost of synchronization with the rest of the system it is embedded into (lost of
sequence) we focused our attention to design a control flow checker and to perform further
fault injection campaigns targeted to the specific memory registers involved in the control
flow.

3. Proposed Architecture of Control Flow Checker
The proposed control flow checker is based on a hardware signature analysis technique to

verify on-line the correctness of the operations executed by the microcontroller.
Signature analysis check is a well-known technique present in literature [12] [13]. The main
feature of the checker is its complete independence from the system similarly to [20] but with
a simple ad-hoc architecture instead of a watchdog processor. The major advantage of the
architecture is that it does not require modifications to the code executed by the
microcontroller nor to the microcontroller itself. To obtain this result with pursued the
following approach:
1. We considered the microcontroller as a “black box” whose external observable signals are

the address bus and the other I/O pins.
2. We modeled the behavior of the system analyzing the flow diagram of the executable

code.
The signature analysis is applied to control the behavior of this “black box”. A hardware
signature checker, which controls address bus and synchronization signals of the
microcontroller, physically performs the error detection.
Figure 2 shows a typical flow diagram of a program executed by the microcontroller. In the
flow diagram of a generic assembler program there are two kinds of instructions: sequential
instructions and conditional instructions. We assume that all the conditional instructions and
some particular sequential instruction (such as the first one) correspond to the flow diagram
checkpoints. Therefore, the decomposition of this flow diagram can be done considering all
the consequential instructions between two checkpoints.
During the execution of the program, the microcontroller generates a sequence of addresses to
read the program code stored in the program memory. Each sequence of instructions is
mapped into a sequence of addresses on the address bus; therefore, we can associate to each
sequence of instructions a signature vector that is computed based on the sequence of
addresses produced on the program address bus.
The calculation of the signature is obtained using Linear Feedback Shift Registers (LFSR)
applied to the program address bus.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

Figure 2: Generic assembler program flow diagram.

The hardware signature analysis system (Figure 3) is intended to perform the hardware check
of the signature with the above-defined approach. The checker is pre-loaded with all possible
signatures and checkpoints associated with the program executed by the microcontroller. The
occurrence of a fault in the microcontroller generates an abnormal sequence that is revealed
by the signature checker and communicated to the error handler. The error handler can reset
the active microcontroller or substitute it with a spare one if the failure persists after the reset.

Figure 3: Hardware signature analysis system.

In Figure 4 we show the internal structure of the signature analysis checker. This system is
composed of five main elements.

1. The “Signature generator” block receives in input the addresses of the instructions
that the microcontroller provides during the execution of a sequence of instruction
and computes the related signature.

2. The “Test point detector” block that is pre-loaded with all the addresses of the test
points, detects the start and end of each sequence.

3. The “System Handler” block controls the signature generation system. The “System
Handler” receives the normal synchronizations signals generated by the
microcontroller and schedules the signature computing operations.

4. “Signature comparator”: once a test point is detected the present sequence is
terminated and the signature vector is evaluated by the signature comparator. If the
signature provided is not belonging to the pre-calculated set of signatures, the
comparator signals the occurrence of a failure to the error handler that starts the
system recovery procedure. Otherwise, if the signature is a valid one, the signature
generator starts the signature computation of the next sequence

A c t iv e
μ C

S ig n a tu r eS ig n a tu r e
C h e c k e rC h e c k e r

A d d res sA d d re s s

E r r o r E r r o r
H a n d le rH a n d le r

R e s e tR e se t

P r o g r a m
M e m o r y

Check

Check

Check 3

Instruction

Instruction

Instruction Instruction

Instruction

Instruction

Instruction

Instruction

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

5. “Watchdog timer”: this block handles the occurrence of faults that could cause a
freeze of the microcontroller and the consequent impossibility of detecting the fault
with signature analysis. A timer is set to zero on each start of sequence and if the time
measured becomes longer than the longest possible sequence an error signal is issued.

Figure 4: Internal structure of signature checker block.

4. FPGA Implementation of an 8051 with control flow checker
The above introduced methodology has been tested and verified on hardware by using a

free synthesizable 8051 IP model [11] (with specific modifications) on a Xilinx Virtex
XCV1000 FPGA mounted on the Xilinx AFX BG560-100 development board.
The model we synthesized contains both the program ROM and the RAM of the
microntroller. The main characteristics of the model are:

• Instruction set compatible to the industry standard 8051 microcontroller
• Optimized architecture enabling fast one to four clocks per OP code
• No multiplexed I/O ports
• 256 bytes internal RAM
• Up to 64 Kbytes ROM and up to 64 Kbytes external RAM

We then implemented the hardware checker above described that introduces a low hardware
overhead. Finally, to test the fault coverage of the proposed checking, we also added some
suitable modules (so-called “saboteurs”) to inject SEU in the memory locations of the 8051
devoted to the program execution. The area occupied by the microcontroller, with 4 Kbyte of
external RAM and 64 Kbyte ROM, together with the checker is summarized in Table 2, as it
can be noticed the introduction of the HW checker accounts for a very small overhead of
about 9% of the total design.

 # of SLICEs FPGA occupation Design occupation
8051 2475 20% 90.9%
HW checker 247 2 % 9.1%
Total 2722 22% 100%

Table 2: Area Occupation of the 8051 microcontroller and the HW flow checker

5. Fault Injection Test Bed
To test the effectiveness of the signature analysis checker we performed a fault injection

campaign on the 8051 implemented on the FPGA together with the checker. Fault injection
has key role in the design flow of self-checking digital circuits and the FPGA implementation
is fundamental to obtain a rapid prototyping of digital systems. Several FPGA fault injection
methodologies have been proposed in literature [9] [10]. The speed-up of injection campaigns
on a FPGA implementation is very high respect to VHDL simulated methods [3] being the
length each run about 60 ms.

Error

Signature vector
Address Signature

generator

Test Point
Detector

Signature
Comparator

System
Handler

Watchdog timer

OR

Timing Signal

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

The execution of a fault injection campaign can be described as the repetition of the following
steps:

1) The test program is partially executed for a random number of clock cycles until
occurrence of the bit-flip.

2) A SEU fault is injected into a random register of the set of target registers. The
injection is performed using one of the methods proposed in literature.

3) The test program is executed until its end.
4) The RAM and the 8051 registers are read back and compared with the fault-free

results (golden run).
We choose to perform the fault injection using some minor modifications to the VHDL code
of the system [10]. These modifications allow changing the content of one or more bit of the
registers when external signals are asserted. The use of this method is better suited to our
purpose with respect to the use of partial reconfiguration of the FPGA [9].
In fact, while the use of partial reconfiguration seems to be very attractive because of its
flexibility, we observed that its application in our case presented two major drawbacks:

1) The partial reconfiguration needs a certain time to perform and in this period the
operation of the microcontroller must be stopped.

2) In a complex system, like the synthesized microcontroller, the identification of the
targets is not straightforward and the operation is time consuming

The approach we used allowed us to quickly perform a large number of injection runs with a
very low time overhead. The set-up of the fault injection campaign is sketched in Figure 5: a
C program running on a workstation exchanges data and controls with the system mapped on
the FPGA board using a parallel cable: the fault injection mask is executed runtime during the
program execution without stopping the microcontroller whose clock is controlled by the .
The fault injection is made with a suitable saboteur subsystem operating on the above-
mentioned Special Function Registers of the 8051 microcontroller.

Figure 5 Fault Injection System setup

In particular, our main goal was to perform bit flip injection on the most sensitive registers of
the microcontroller with respect to the lost of sequence in the control flow and to evaluate the
fault coverage of the proposed architecture. To focus on errors caused by the program flow,
we choose as a target test program the vector sorting: the lower sensitivity of this program to
general fault injection as shown in Table 1 can be explained because this program makes a
lesser use of memory to store the values, therefore more sensitive to errors cased by faults
affecting the registers of the control path.
We loaded a simple vector sorting test bench program on the microcontroller ROM [3] and,
for each bit flip injection run, we evaluated the correctness of the results with respect to the
“golden run”. We therefore choose a subset of the register space that we expected to reveal
more errors in the program execution. The subset is composed of the following registers:

Test
handling
Program

X ilinx
FPG A parallel cable

C ontro ls: clock ticks, fault injection
com m ands, results readback

Im plem ents: 8051 IP core
fault in jection m echanism ,
contro l f low checker

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

Program Counter PC

Stack Pointer SP

Data Pointer transfer Register DTPR

Program Status Word PSW

Accumulator ACC

B register B

When the read back is performed the workstation acquires both the results of the computation
performed by the 8051 and the signals generated by the control flow checker. In this way we
were able to perform the performance evaluation of the control flow checker.

6. Simulation Results
We performed a large number of fault injection runs in three series of randomly chosen

injection times and targets, the results of the simulations are reported in Table 3.

 # Runs #Result

Errors

% Result

Errors

#Lost of

sequence

%Lost of

sequence

Detected

Errors

#Detected Lost of

Sequence

Result Errors

coverage

Lost of Sequence

coverage

First 40000 6078 15.19 4969 12.42 3110 4908 51.16% 98.77%

Second 40000 5948 14.87 4864 12.16 3066 4797 51.54% 98.62%

Third 40000 5692 14.90 4785 11.96 2964 4746 52.07% 99.18%

Average 40000 5912.67 14.99 4872.67 12.18 3046,67 4817 51.53% 98.86%

Table 3: Fault Injection Simulation result

As mentioned above, we focused our attention on detecting the errors caused by the faults in
the control flow by injecting bit flips in specifically targeted registers. The results show that
targeting these registers causes a very similar amount of lost of sequence faults and result
errors (12.18% and 14.99% respectively) whereas when targeting all the registers the result
errors are much more relevant (see [3]).
We expected that the checker would have a high coverage on the lost of sequence errors as
these are closely related to faults that affect the control path of the microcontroller, the results
of the simulations confirmed our expectations showing that the checker provided and average
98.86% of coverage. We assumed that a lost of sequence occurred if the program did not
terminate in a time 150% of the normal execution time then we checked if the signature
analysis checker detected the error. The high coverage allows protecting the microcontroller
from freezes that would isolate it from the rest of the system. We also found an interesting
simulation result in the correlation between result errors and control flow error with an
average of above 50%, however, the improvement of the correctness in the results values
should be obtained using appropriate methods for the data path that are not considered in this
paper.

7. Conclusions
The program flow checking of the microcontroller was implemented with a signature analysis
checker connected to the ROM address bus. The performance evaluation of the system was
made running a simple test bench program on the SoC microcontroller for embedded
applications synthesized on an FPGA. The choice of the targets for the injections was made

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

on the Special Function Registers because of their particularly strong impact on the overall
microcontroller reliability. The results showed that the checker provides a high coverage with
respect to the faults affecting the control flow of the microcontroller allowing a very high
level of protection against freezes and showing a 50% correlation between control flow errors
and wrong computation results.

 8. References
[1] T. Ma, P. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, Wiley Eds., New York, 1989.
[2] J. H. Elder, J. Osborn, W.A. Kolasinsky, R. Koga, A method for characterizing microprocessor’s vulnerability to SEU, IEEE
Trans. on Nucl. Sci., vol 35, N° 6, pp. 1679- 1681, Dec. 1988
[3] G.C. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S. Pontarelli, R. Velazco, "Bit flip injection in processor-based
architectures: a case study", 8th IEEE International On-Line Testing Workshop, IOLTW, France, July 2002.

[4] R. Velazco, Ph. Cheynet, A. Bofill, R. Ecoffet, THESIC: A testbed suitable for the qualification of integrated circuits devoted
to operate in harsh environment, IEEE European Test Workshop (ETW’98), Sitges, (Espagne), pp. 89-90, 27-29 Mai 1998.

[5] R. Velazco, S. Rezgui and R. Ecoffet “Predicting error rate for microprocessor-based digital architectures through C.E.U.
(Code Emulation Upset) Injection”, IEEE Trans. on Nuclear Sci. , Vol 47, Dec 2000 pp. 2405 – 2411.

[6] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodríguez, J.R. Mingo, A New Methodology for the Simulation of Soft Errors on
Microprocessors : A Case Study, MAPLD 2000 Military and Aerospace of Programmable Devices and Technologies, Laurel,
Maryland (USA), Vol. 1, Session B, 26-28 Sept. 2000
[7] J. Garcia, J. C. Baraza, D. Gil, P.J. Gil “Comparison and application of different VHDL-based fault injection Techniques”,
Defect and Fault Tolerance in VLSI Systems, 2001. DFT '01. Int. Symposium on , 2001 pp. 233 – 241

[8] Berrojo, L.; Gonzalez, I.; Corno, F.; Sonza Reorda, M.; Squillero, G.; Entrena, L.; Lopez, C. Design, New techniques for
speeding-up fault-injection campaigns Automation and Test in Europe Conference and Exhibition, 2002. Proceedings , 2002
Page(s): 847 -852

[9] L. Antoni, R. Leveugle, B. Feher “Using run-time reconfiguration for fault injection in hardware prototypes”, Defect and
Fault Tolerance in VLSI Systems, 2000 DFT '00. Int. Symposium on.
[10] Civera, P.; Macchiarulo, L.; Rebaudengo, M.; Sonza Reorda, M.; Violante, M. “Exploiting FPGA-based techniques for fault
injection campaigns on VLSI circuits” Defect and Fault Tolerance in VLSI Systems, 2001. Proceedings. 2001 IEEE International
Symposium on , 2001 Page(s): 250 -258

[11] http://www.oregano.at/services/8051.htm
[12] Wilken, K.; Shen “Continuous signature monitoring: low-cost concurrent detection of processor control errors”, J.P.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on , Volume: 9 Issue: 6 , June 1990 Page(s): 629
–641

[13]. Mahmood, A.; McCluskey E.J, “Concurrent error detection using watchdog processors-a survey” Computers, IEEE
Transactions on , Volume: 37 Issue: 2 , Feb. 1988 Page(s): 160 -174
[14] Ammari, A.; Hadjiat, K.; Leveugle, R.; “On combining fault classification and error propagation analysis in RT-Level
dependability evaluation” Proceedings. 10th IEEE International On-Line Testing Symposium, 2004. IOLTS 2004. 12-14 July
2004 Page(s):227 – 232

[15] Nicolescu, B.; Peronnard, P.; Velazco, R.; Savaria, Y.; “Efficiency of transient bit-flips detection by software means: a
complete study” Proceedings. 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2003. 3-5
Nov. 2003 Page(s):377 – 384
[16] Fazeli, M.; Farivar, R.; Miremadi, S.G. “A software-based concurrent error detection technique for power PC processor-
based embedded systems” 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT
2005. 3-5 Oct. 2005 Page(s):266 – 274

[17] Gil, D.; Gracia, J.; Baraza, J.C.; Gil, P.J “Analysis of the influence of processor hidden registers on the accuracy of fault
injection techniques” Ninth IEEE International High-Level Design Validation and Test Workshop, 2004. Volume , Issue , 10-
12 Nov. 2004 Page(s): 173 – 178
[18] Nicolaidis, M. “IP for embedded robustness” Proceedings Design, Automation and Test in Europe
Conference and Exhibition, 2002. 4-8 March 2002 Page(s):240 – 241
[19] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, A. Salsano, “A Fault-Tolerant Solid State Mass Memory for
Space Applications” in IEEE Transactions on Aerospace and Electronic Systems, vol. 41, n. 4, pp: 1353-1372,
October 2005
[20] T. Michel, R. Leveugle, G. Saucier "A new approach to control flow checking without program modification"
21st Symposium on Fault-Tolerant Computing (FTCS), 1991, pp. 334-341

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

