
Error detection in Signed Digit Arithmetic circuit

with parity checker

G.C. Cardarilli, :M. Ottavi, S. Pontarelli, 11.Re, A. Salsano
{ottavi,pontarelli,salsano }@ing.uniroma2.it

{marco.re, g.cardarilli }@ieee.org
Department of Electronic Engineering

University of Rome "Tor Vergata"
Via Del Politecnico 1 00133 Rome, ITALY

Abstract

This paper proposes a methodology for the development of simple arithmetic self­
checking circuits using Signed Digit representation. In particular, the architecture of
an adder is reported and its self- checking capability with respect to the stuck-at fault
set is shown. The main idea underlying the paper is to exploit the properties of Signed
Digit representation allowing carry-free operations. In a carry free adder the parity can
be easily checked allowing therefore detecting the occurrence of a fault belonging to the
considered stuck- at fault set. The proposed architecture is therefore very suitable for
the implementation of self-checking adders that are also fast due to the same carry free
property.

1 Introduction

Adders are one of the building blocks of integrated circuits as they are used in ubiquitous
applications like computing and controlling. Therefore the self-checking implementation
of these arithmetic circuits has a strong impact on the reliability of many applications
and has always represented an important research topic. Many literature proposes self­
checking adders implementations either based on residue codes as for example in [2] or
on parity codes as in �3J. In this paper a self checking adder architecture is proposed,
the proposed architecture relies on Signed Digit representation properties [1 J in order
to implement an easy parity checking scheme of the operation.

Parity coding is already used in ALl! and register file implementations, hence the
embedding of the proposed solution can exploit already available redundancies. On
the other hand the implementation of an adder in Signed Digit representation, allows
obtaining fast arithmetic circuits due to the carry-free property and also can be used

1

in the implementation of RNS modules [6]. Therefore, the use of techniques of fault
detection as described in this paper can be applied both in the implementation of high
speed and highly reliable circuits either, if used with RNS, in the implementation of
graceful degradable arithmetic circuits. The latter option relies on the technique of
excluding the faulty RNS module and working with reduced dynamic. In previous
literature other solutions based on carry-free self checking adders have been proposed
[4] [5] in particular, in [4] an inherent parity coding scheme to code the digits is proposed
while in [5] a lout of 3 scheme is investigated. In the proposed solution a different
coding scheme is proposed allowing fast conversion and low overhead in the adder
implementation.In the paper the proposed solution is analyzed and it is shown to be
self checking with respect to faults occurring on both levels of the SD sum. The area
occupancy and the overhead introduced by the checker in an FPGA implementation is
also provided.

The paper is organized as follows: in Section 2 an overview of the characteristics of
signed digit circuits is reported, while in Section 3 the chosen digit coding is reported and
discussed with respect to fault detection. In Section 4 the characteristics of the carry­
free operation with respect to the parity coding is reported, while in Section 5 the self
checking adder architecture is proposed together with an analysis of its implementation
overhead. Finally, in Section 6 conclusions and future works are drawn.

2 Background

In this section the basic theory of Signed Digit Representation is reported together with
the description of the carry free adder architecture. Given a number x E [-(2n-1), (2n-
1)] it can be represented in Signed Digit representation as shown in the following:

2n-1 + 2n-2 +
x = Xn-I Xn-2 . . . + Xo (1)

Where Xi E {-1, 0, 1}, (i = 0, . . . n - 1). This representation allows to use an archi­
tecture like described in figure 1 to implement a carry-free adder. The main elements
of the adder are the blocks ADD1 and ADD2 that perform the following operations.

ADD1: This block has four inputs (ai, bi, ai-I, bi-I) and two outputs (Ci' Wi) and
is responsible to perform the following operations in case the absolute values of the
operands ai and bi are the same or are different .

• when abs(ad = abs(bi) then Wi = 0 and Ci = (ai + bi)div2

• when abs(ai) =1= abs(bd then if (a; + bi) and (ai-l + bi-1) have the same sign then
Wi = -(ai + bi) and Ci = (ai + bi) otherwise Wi = (ai + bi) and Ci = 0

The function implemented by the ADD1 block is summarized in Table 1.
ADD2: This block has two inputs (Wi, Ci-l) and one output Zi and is responsible

to perform the following operation:

2

Addend, Augend Digits Sign Info on Digits Intermediate Intermediate
Position i Position i -I Carry Digit Ci Sum Digit Wi

-1,-1 Not Used -1 0
-1,0 (ai-l + bi-d < 0 -1 1
-1,0 Otherwise 0 -1
0,0 Not Used 0 0
1,-1 Not Used 0 0
1,0 (ai-l + bi-l) > ° 1 -1
1,0 Otherwise 0 1
1,1 Not Used 1 °

Table 1: ADD 1 Functions

Wi Ci-l Zi
-1 -1 -

-1 0 -1
-1 1 0
0 -1 -1
0 0 0
0 1 1
1 -1 0
1 0 1
1 1 -

Table 2: ADD2 Function

The function implemented by the ADD2 bock is summarized in Table 2.
It is always true that 2Ci + Wi = ai + bi and Ci-l and Wi do not have the same sign,

so that Zi E {-I, 0, I}.
The carry propagation is limited to one digit, and therefore the addition can be

done in parallel, as shown in Figure l.

3 Parity and chosen code

From the previous description we have that each digit Xi can assume three values, hence
its binary representation must rely on two bits. The coding reported in the following
table has been chosen.

The adoption of this coding has two advantages:

1. conversion from binary to SD representation is straightforward as the less signifi­
cant bit (bit 0 in table) has the same value in both representations while the other
bit (bit 1) is put to 0 in the conversion.

2. as described before, the function performed by ADDI on ai, bi needs to evaluate
the sign of the operands ai-I, bi-I in order to determine the output l. With the

3

Zn Zl Zn

Figure 1: Adder based on Signed Digit Arithmetic

bit 1 bit a Xi

a a a
a 1 1
1 a -1
1 1 a

Table 3: Chosen coding

proposed coding only the MSBs of ai-l , bi-1 are necessary and the ADD1 circuit
can be implemented with 6 input bits instead of 8.

Using the reported coding any error occurring on one of the bits representing the digit
Xi does not invert the absolute value of the digit Xi itself. In other words, an error on
one of the bits representing a digit can never cause the inversion of its sign i.e. from
-1 to 1 or vice versa. Defining P (a) the sum modulo 2 of all the bits representing
the number a we have that each error on a single bit of the representation leads to a
variation of the parity P (a) .

4 Parity in the carry-free sum

The coding reported in Table 3 allows deducing some properties of sum operation with
respect to the parity calculation. Assuming P (c) and P (w) as the parities of carry
and partial sum and P (z) the parity of the result, then the following properties are
demonstrated:

Property 1
P(z) = P(c) Ell P(w) (2)

(from the definition of ADD1) It cannot happen that Ci-l and Wi have the same sign
hence for every Zi the values can be as reported in the following Table 4

4

Zi Wi Ci-l
00(11) 01 10

01 01 00
10 10 00

00(11) 00(11) 00(11)

Table 4: values of Zi in function of Wi and Ci-l

Because the property is true for every Zi, it is true also for z.

Property 2
P(W) = P(a) (JJ P(b) (3)

Like before, the demonstration is based on showing that P(Wi) = P(ai) EB P(bi) holds
for every i.

From the following table we have:

Wi ai bi P(Wi) P(ai) P(bi)
0 0 0 0 0 0
±1* 0 1 1 0 1
±1* 0 -1 1 0 1
0 1 1 0 1 1
0 -1 1 0 1 1
0 -1 -1 0 1 1

* Sign depends on the values of ai-l and bi-1
as can be seen for all the cases P(Wi) = P(adEBP(bd, therefore P(w) = P(a)EBP(b)

5 Self-checking adder

Before introducing self-checking adder the behavior of the adder of Figure 1 is described
in case of the occurrence of stuck-at faults in different parts of it:

1. Stuck-at on an output of ADD2:

In this case, the error produced by the output of block ADD2 modifies the parity
of z as the coding described in section 3 does not allow that an error on a single
bit modifies the value of the digit from 1 to 1 and vice versa (these two values have
the same parity) . The error is detectable with a parity checker on the output.

2. Stuck-at on an input of ADD2 (i.e. output of ADDl)

Also in this case the fault is limited to only one block and leads to the modification
of the parity of result z with respect to the correct one. A particular case must be
considered though, i.e. when a one of the inputs is 1 (-1) and the other changes

5

from ° to 1 (-1). Even if this case is not contemplated in the normal behavior of
the circuit, it is possible anyway to implement ADD2 to output ° when such a
configuration shows up at the inputs. This again allows having an output z with
a different parity with respect to the correct one.

3. Stuck-at on an input of ADDI

As can be seen in Figure 1, a fault on an input of ADDI can modify the value of
four outputs. As an example, a stuck-at fault on a line of ai can change the value
of both Wi , Ci and Wi+l Ci+1' Regarding the bits of weight i + 1 it can be noticed
that the only changes that can be introduced from an error on bits of the lower
level are the modification of the outputs (Wi+1, Ci+1) from (-1,0) to (1,-1) and vice
versa, or from (1,0) to (-1,1) and vice versa. In all these cases, the parity value of
Wi+1 does not change as P(I)=P(-I). Instead, regarding the bits of weight i, an
error on one of the inputs ai and bi modifies always the value of Wi and its parity.

From the above analysis it can be stated that all the type 1 and 2 faults can be detected
checking the parity P(z), while all the type 3 faults can be detected checking the parity
P (w).

pea) PCb)

Error
Indicator 1

Error
Indicator 2

Figure 2: Self Checking adder implementation

h

P(c)

In Figure 2 the block diagram of self-checking adder is introduced. The main blocks
introduced in the self checking adder are:

1. "Parity Prediction" block, generates the value of P (c)

2. Error Indicator 1, checks if P(w) = P(a) tfJP(b) and issues an error signal in case
of mismatch;

6

3. Error Indicator 2, checks if P (z) = P (w) EB P (c) and issues an error signal in case
of mismatch;

The values of P (w) and P(z) are calculated by means of parity generating circuits.
According to the above discussion, the output of Error Indicator 1 allows detecting the
occurrence of type 3 faults, while the output of Error Indicator 2 allows detecting the
occurrence of both type 1 and type 2 faults. The Parity Prediction block is implemented
by performing the xoring of all P(Ci). As seen in section 3, the computation of Ci (and
then of its parity), depends on the value of 6 variables. The boolean function

has been easily deduced from the above reported tables. In order to evaluate the area
overhead introduced by the checker an FPGA synthesis has been performed using Xilinx
Virtex XCVlOOO as target device. From the results output by synplify synthesis tool
we obtained the results reported in Table 6.

inputs # outputs # 4 input LUTs
ADD1 6 4 8
ADD2 4 2 2
P(Ci) 6N N 3N

Table 6: I/O and LUT count

The Error Indicator 1 and Error Indicator 2 are implemented as two-rail parity
checker while xor trees are used to generate P (c) , P (z) and P (w). The two-rail imple­
mentation of the Error Indicator blocks allows the detection af a stuck-at fault inside
this blocks, while a fault in the parity prediction blocks is detected by the Error Indi­
cator block. The count of LUT number for these trees are reported for N=8,16,32 in
the following table:

N=8 N=16 N=32
Error Indicator 1 5 11 21
Error Indicator 2 1 1 1

Xor P (w) 1 1 1
Xor P(c) 3 5 11
Xor P (z) 5 11 21

Table 7: Blocks Overhead

Assuming to have N digits operands and given the area overhead of the adder with­
out redundancy from #LUT = N * (#LUTADD1 + #LUTADD2) and the area occupation
of the checker from the previous tables, we can draw the following table for the area
overheads.

As can be seen, the overhead introduced by the checker is less than 50% of the adder
area and the value slightly decreases with the increase of word length.

7

Adder Checker % overhead
N=8 80 39 49

N=16 160 77 48
N=32 320 151 47

Table 8: Checker Overhead

6 Conclusions and future work

In this paper the architecture of a self checking Signed Digit adder has been proposed.
Exploiting the characteristic of the Signed Digit arithmetic, the reported architecture is
shown to be self checking with respect to stuck-at class faults by using parity checking.
The introduced coding for signed digit encoding has proved to be also effective in order
to easily implement the conversion from binary coding and to obtain area effective adder
as well as checker implementation. The introduced overhead of the checker is proved
to be less than 50% of the adder. Future work will include the use of this adder as
building block of reliable RNS arithmetic circuits as well as high speed filters.

References

[1] A. Avizienis, "Signed-Digit Number Representations for Fast Parallel Arithmetic"
IRE Trans. Electronic Computers, vol. 10, pp. 389-400, 1961.

[2] W. W. Peterson "On checking an adder" LB.M. J. Res. Develop., vol 2, pp. 166-168,
Apr 1958.

[3] Nicolaidis, M. "Carry checking/parity prediction adders and ALUs" IEEE Trans­
actions on very Large Scale Integration (VLSI) Systems, Volume: 11 Issue: 1 , Feb
2003 Page(s): 121 -128

[4] M. A. Thornton, "Signed binary addition circuitry with inherent even parity out­
puts" IEEE Trans. on Computers, vol. 46, pp.811-816,July 1997.

[5] W. J. Townsend, M. A. Thornton, and P. K. Lala, "On-Line Error Detection in a
Carry-Free Adder", 11th IEEE/ ACM International Workshop on Logic & Synthesis
pp. 251-254, New Orleans, LA, June 4-7, 2002

[6] Shugang Wei; Kensuke Shimizu, "Fast residue arithmetic multipliers based on
signed-digit number system" , The 8th IEEE International Conference on Electronics,
Circuits and Systems, 2001. ICECS 2001. Volume: 1, 2001 Page(s): 263 -266 voLl

8

