
Error Detection in Ternary CAMs
Using Bloom Filters

Salvatore Pontarelli, Marco Ottavi
University of Rome ”Tor Vergata”

Rome Italy
{pontarelli,ottavi}@ing.uniroma2.it

Adrian Evans
iRoC Technologies,
Grenoble, France

adrian.evans@iroctech.com

Shi-Jie Wen
Cisco Systems Inc.
San Jose, CA, USA
shwen@cisco.com

Abstract—This paper presents an innovative approach to detect
soft errors in Ternary Content Addressable Memories (TCAMs)
based on the use of Bloom Filters. The proposed approach is
described in detail and its performance results are presented. The
advantages of the proposed method are that no modifications to
the TCAM device are required, the checking is done on-line and
the approach has low power and area overheads.

I. INTRODUCTION

A Content Addressable Memory (CAM) is memory capable
of comparing a word of input data against all the data words
stored in the memory, providing as result the address of the
matching data [1], [2]. A binary CAM is the simplest imple-
mentation of a CAM where search words are composed only
of 0s and 1s. A ternary CAM (TCAM) also allows for the
matching of a third value “X” which represents a don’t care
value and consequently allows a highly compacted means of
storing patterns to match. For example an entry “10XX1” in
a ternary CAM matches the following four patterns “10001”,
“10011”, “10101”, “10111”. The typical implementation of the
don’t care bits is obtained by defining a mask string for each
entry of the Ternary CAM. In the previous example the mask
string would be “00110” while the actual entry is “10–1” where
“-” can be either 0 or 1. TCAMs are widely used in high speed
network systems to implement features such as classification
and access control [3]. In fact, their ability to perform massive
comparisons with O(1) complexity makes them extremely
appealing for searching large tables with very low latency. The
use of the Xs makes it possible to apply admission or quality
of service (QoS) policies to classes of traffic using a modest
number of table entries [4].

Currently, the use of nanometer scale technology, the re-
duction in operating voltages and the increase in the overall
number of stored bits have caused a consequent increase in the
error rate due to the occurrence of Single Event Upsets (SEUs).
SEUs occur when sub-atomic particles strike a sensitive area of
a circuit and the interaction between the silicon and particles
creates free charge that can be collected by the sensitive circuit
nodes close to the location of the particle impact. The collected

This work supported in part by Cisco Systems Inc. via a Cisco Research
Award. Marco Ottavi is supported by the Italian Ministry for University and
Research Program “Incentivazione alla mobilità di studiosi stranieri e italiani
residenti all’estero”, D.M. n.96, 23.04.2001

charge can change the state of a circuit, for example, by flipping
the value of a bit from 0 to 1 or viceversa.

Many strategies have already been proposed to mitigate the
effects of SEUs in random access memories, based on informa-
tion redundancy or on technology/circuit level solutions. Error
detection and correction codes [5] are a typical application of
information redundancy. Depending on the type of memory to
protect, and on the required data integrity level, different codes
can be used [6], [7]. Instead, technology and circuit solutions
are aimed at increasing the minimum charge (the so-called
critical charge) value needed to flip the value of a node [8].

It is difficult to directly apply protection techniques based
on information redundancy to TCAMs because all entries are
accessed simultaneously. However, networking systems based
on TCAMs require high reliability and new approaches are
required to mitigate the effects of SEUs.

In the literature different techniques have been proposed
to mitigate the effects of SEUs in TCAMs. Almost all the
proposed techniques require modifications to the CAM archi-
tecture [14] performed at circuit or architectural level or are
based on a background parity scan which has a long detection
latency.

Instead, we propose a method that does not require modifica-
tions to the internal structure of the TCAM, since this is often
designed in a full custom design flow to minimize power and
area consumption of the core cell. The proposed technique can
be implemented as a stand-alone module that operates in par-
allel with the TCAM and checks the correctness of the results
of each access. Error detection is immediate, unlike techniques
based on background parity scans. Moreover, the proposed
solution is particularly well suited to TCAM applications with
wide word sizes, like the ones used in modern network systems,
since the overhead is independent on the TCAM word size.

This paper extends the method proposed in [9] for binary
CAMs, to Ternary CAMs, managing the presence of don’t care
bits by using suitable hashing mechanisms.

The method presented in [9] proposes to add in parallel to
the CAM a well known data structure, called a Bloom Filter, to
efficiently detect if the TCAM has provided a correct result or
if it was affected by an error. A Bloom Filter is a structure that
can be realized efficiently with limited hardware resources, or
with efficient software algorithms.

In a Bloom Filter when data has to be stored (or queried)978-3-9815370-0-0/DATE13/ c© 2013 EDAA



it is hashed with multiple hash functions, and at the output of
each hash a corresponding memory location is written (read). A
Bloom Filter performs a limited number of memory accesses,
one for each hash output, and therefore its memory can be
easily protected against SEUs using standard ECC techniques.
Therefore we assume that the Bloom Filter is error-free.

A Bloom Filter performs two tasks: 1) stores a set of items
in its memory, and 2) quickly responds to a query about the
presence of an item. The drawback of using such a structure
lies in its probabilistic nature which suffers from false positives.
A false positive occurs when the hash functions alias. With a
certain probability (called the false positive rate), the Bloom
Filter can report a data element as being present when in fact it
was not inserted into the Bloom Filter. However, when a Bloom
Filter signals that a data is not present this is always the case (
i.e. a false negative never occurs in a Bloom Filter).

The rest of the paper is structured as follows: Section II
presents a survey of previously proposed methods for protecting
CAMs and TCAMs against the occurrence of SEU. Section III
gives a background on Bloom Filters, while Section IV describe
how to manage the don’t care bit by using suitable hashing
functions. Section V presents the proposed architecture of a
TCAM with error detection and error correction capabilities.
Section VI presents the results obtained by using both a syn-
thetic data set and an actual industrial data set. Finally, Section
VII draws the conclusions and discusses further work that can
be done to extend this method.

II. RELATED WORKS

In industry, the standard approach to error detection in
TCAMs is to protect the entries with a parity code. It is not
practical to simultaneously check the parity of all entries and
it is not sufficient to only check the parity of the matching
entry, since an error on a higher priority entry can create an
incorrect match. Therefore, a parity scan engine runs in the
background and sequentially reads through the entries, check-
ing the parity and triggering an error indication if there is a
mismatch. Software then intervenes and re-writes the corrupted
TCAM entry. The drawback to this method is that there can be
a significant latency between when an error occurs and when
it is detected and then fixed by software. During this window
of time, incorrect decisions are occurring. Multiple interleaved
parity bits are used to protect against upset events which corrupt
adjacent cells which are an increasing concern.

In [15], error correcting codes for TCAMs are proposed,
however, these require a 200% overhead in order to correct
single bit errors. In [14], a hardened TCAM cell with cross-
coupled feedback loops is proposed. A SER reduction of about
30% is achieved with an area penalty of 15%. Others [16],
have proposed using a duplicate TCAM for error detection and
correction.

None of the existing solutions provide strong, on-line error
detection with a modest area overhead.

III. OVERVIEW OF BLOOM FILTERS

In this section we present an overview of the well-know
Bloom Filter [11] structure.

A Bloom Filter [11] is a probabilistic data structure used to
check the membership of an element in a set. The structure
allows the occurrence of false positives (i.e. the Filter signals
an element as present even if it is not true), but false negatives
are not possible (i.e. if an element is present the Filter will
never signal the opposite ). Elements can be added to the set,
but not removed and the more elements are added to the set, the
larger the probability of false positives. In this paragraph we
report the equations needed to correctly dimension the Filter
with respect to the required false positive probability and the
expected number of elements to be stored. A Bloom Filter
is implemented as a bit array of m bits accessed via k hash
functions H1(x)...Hk(x), each of which maps a set member x
to one of the m bits within the bit array. We denote as v(i) the
value of bit i within the bit array.

Two operations are possible with a Bloom Filter:
1) Insertion: an element x is inserted into the Filter by

setting to one all the indexes of the bit array addressed
by the k hash functions. In a mathematical notation this
corresponds to:
∀i ∈ {1..k}, v(Hi(x))← 1.

2) Querying: An element is present in the Filter if all the
values of the bit array addressed by the k hash functions
are equal to 1.
result← min{v(Hi(x))}, i ∈ {1..k}

For a Bloom Filter in which n elements are stored, the
probability ρ(n) that a given bit in the Filter is zero is given
by:

ρ(n) =
(

1− 1
m

)kn

≈ e−n k
m . (1)

If we test membership of an element that is not in the set,
each of the k bit array values indexed by the hash is 1 with
probability 1 − ρ(n). The probability of all of them being 1,
which would cause the false positive, is then

Pfp(n) = (1− ρ(n))k ≈ (1− e−
kn
m )k (2)

The probability of false positives decreases as m increases,
and increases as n increases. For a given m and n, the value of
k (the number of hash functions) that minimizes the probability
is: k = m/n ln 2 ≈ 0.7 ·m/n

Using the optimal value of k we obtain

Pfp(n) = 2−k ≈ 0.61m/n (3)

Using equation (3) we can size the Bloom Filter according
to a required number of elements to be stored and to a required
minimum false positive rate. Figure 1 illustrates the structure of
a Bloom Filter.

IV. APPLICATION-AWARE HASHING

The trivial method of inserting don’t care bits in a BF is
to fully expand each of the masked values to its unmasked
values. This is not scalable as the number of insert operations
and the size of the Bloom filter would grow exponentially with
the number of don’t care bits. From a hardware perspective



Fig. 1. Scheme of a Bloom Filter. The data x to be stored is hashed n times
and the bits addressed by the hashes are set.

a TCAM can have dont cares in any bit of any entry. Some
practical considerations can be used to identify patterns within
the entries based on TCAM usage in industrial applications.

In networking systems, a single large TCAM is used to
support multiple features or applications. Examples of such ap-
plications are packet classification, access control lists (ACLs),
traffic sampling (Netflow) and Quality of Service (QoS), to
cite the most common. The entries in the TCAM are divided
based on the applications and a small number of bits within the
lookup word are used to select which set of entries to match
when a lookup is performed for a specific application. For a
given feature, a specific set of fields from the packet header are
looked up. The usage of fields within an application is regular
and we discern patterns in where don’t care bits appear for
each application. This regularity of the don’t care bits can be
exploited to perform application aware hashing and thus avoid
the explosion that would result from a naive expansion of don’t
care bits.

The fields that compose a TCAM entry can be classified into
three types:

1) Fully Unmasked Type. This represents any field of
size N bits where the mask for all N bits is such that
the corresponding lookup bit must match exactly. These
entries correspond to a binary CAM.

2) Prefix Type. This represents any field, of size N bits,
where the most significant M bits are unmasked (must
match) while the least significant (N - M) bits are masked
(don’t care).

3) Generic Type. This represents an arbitrary field of N bits
where any combination of bits within the field may be
masked or unmasked, and this combination could differ
across TCAM entries.

Frequently generic fields can be decomposed into a portion
which is fully unmasked, thus minimizing the number and size
of generic fields. In fact, TCAM configurations are usually
computed by suitable algorithms that transform classification
rules based on port ranges, IP address and so on, into a set of
TCAM entries [12]. These algorithms produce for each rule,
a set of very similar TCAM rows, that therefore are regular
enough to be managed by suitable algorithms. Since these
algorithms differ from one feature to the next, and therefore
different kinds of similarities occurs, changing the feature under
observation, the application aware approach must define some
managing rules for each different feature.

The key idea to avoid state explosion is to select a different

set of hash functions for each feature in order minimize the
don’t care bits. We call this approach Application-aware hash-
ing.

In particular, for prefix fields we use the approach proposed
in [13] for longest prefix matching, while for generic field
we propose a hashing methodology aimed at compacting the
number of dont care bits. The method in [13] partially masks
the least significant bits, hashing only a variable prefix part of
the field. The hash functions are grouped with respect to an
interval of the prefix length (see Fig. 2). During the insertion
phase, the field is masked following the given prefix don’t care
configuration, and is inserted in the Bloom Filters using the
whole set of hash functions. During the search phase, the item to
be searched, is progressively masked and hashed, like depicted
in Fig.2).

The regularity of TCAM configurations allows us to define
some rules, that can be applied to perform the application-aware
hashing. since the most significant bits of the TCAM define
the feature that define the subsequent fields of the TCAM,
depending on the values of this bits, different hashing rules
are applied to the other fields of the feature. We can define the
following rules:

1) Unmasked fields can be used as input of the hash func-
tions,

2) Fields that are always masked can be ignored in all the
hash functions,

3) Fields of prefix type can be managed using the the longest
prefix match algorithm,

4) Otherwise mask bits are compressed in order to reduce
the number of don’t care bits (e.g. XORing contiguous
bits).

Fig. 2. Masking of bits for Longest Prefix Match.

In order to describe our method, a sample 16-bit wide TCAM
configuration is shown in Fig. 3. In this example the TCAM
contains 4 features:
• Feature 1: In this feature the TCAM is configured to

act as a binary CAM. The feature is composed of three
fields. The first field (00) identify the feature, the second is
always masked, the third is always unmasked. This feature



Fig. 3. Example of content of a TCAM with multiple features: the two Most
significan bits define which kind of feature is stored in the row.

acts as a 10-bits width binary CAM. Following the above
defined rules, the application-aware hashing can be done
using as inputs for the Bloom Filter only the bits in[9 . . . 0]
of the input vector in[15 . . . 0].

• Feature 2: The feature is composed of four fields. The
first two bits (01) identify the feature, the second field,
composed of two bits, are always unmasked, the third field
is generic (i.e. can be masked or unmasked), while the last
field is always unmasked. For this feature we define as an
input to the hash function the concatenation of three bit
vectors:

in[13..12], (in[11]⊕ in[10]⊕ in[9]⊕ in[8]), in[7..0]

Using this vector as input for the Bloom Filter, when
the third field presents unmasked entries, a regular item
is inserted in the Bloom Filter. Instead, for the masked
entries (e.g. the entries with the Xs ) the xor compression
reduces the number of Xs in the input to the Bloom Filter
to a single bit. At this stage we can expand the don’t care,
inserting the 2 items corresponding to 0 and 1 in the BF.
This kind of compression works well under the condition
that, even if the field is defined as generic, the values of
this fields often present some regularities and are repeated
among the different rows of the TCAM.

• Feature 3: This feature is similar to feature 1, configuring
this part of the TCAM as a binary CAM. The first field
(10), identifies this feature, the second field is unmasked,
the third field is aways masked. These rows act as a
6-bit wide binary CAM. The application-aware hashing
approach is applied checking if the value of the first field

is 10. In this case, the input for the Bloom Filter are the
bits in[13 . . . 8] of the original input vector.

• Feature 4 : This feature is composed of three fields. The
first field identifies the feature (11), the second one is a
6 bits unmasked field, while the third one uses Longest
Prefix Match. Applying the rules for application-aware
hashing, the whole input vector is given to the Longest
prefix matching algorithm, setting the range for bit mask-
ing for the bits from 0 to 7.

V. ARCHITECTURE

In this section two architectures for detecting errors in
TCAM are shown. Both architectures use the application-aware
approach to insert and query items in a set of Bloom Filters.
The first architecture (Fig. 4) uses two Bloom Filters, one
that take as input the same key that is applied to the TCAM,
while the other takes as input the concatenation of the couple
{key,entry}, where entry is the response of the TCAM to the
key input. The first BF detects the occurrence of a SEU causing
a pseudo-MISS [10], i.e. the TCAM says that the searched key
is not present. If such type of error occurs, the output of the first
BF and of the TCAM are discordant, since the TCAM gives a
MISS, while the BF gives a HIT. The second BF detects the
occurrence of pseudo-HIT or multi-HIT [10] errors, i.e. the
TCAM gives as output an erroneous output entry, while the
correct value should be another value or a MISS condition.
This error is detected by the second BF, which signals that
the couple {key,entry} in not present in the TCAM. If, due
to hash collision, a false positive occurs in the BF the error is
undetected. The experimental data presented in the next section
shows that the occurrence of both an error in the TCAM and
a false positive in the BF are very low, even with very small
size BF. The experiments we performed show up to 100% error
detection, when the BFs are large enough to avoid many false
positives. The two BFs detect disjoint types of errors and the
fraction of errors detected by the two BFs strictly depends on
the TCAM configuration and on the input keys applied to the
TCAM. In particular, when the TCAM is configured to be used
as a full classifier [12], the first BF becomes useless, since the
MISS condition is never present for the error-free TCAM.

Fig. 4. Two Bloom Filters approach.

The second architecture shown in Fig. 5 uses M Bloom
Filters and splits the content stored in the TCAM into M
different subsets. Each item is inserted in only in the i-th Bloom
Filter, the one corresponding to the condition i = entry mod
M . We remark that, since the false positive rate of Bloom



Filters depends on the ratio between the number of inserted
items and the size of the Bloom Filter, the false positive rate
is independent by M , the number M in which the TCAM
configuration set is divided. Unlike the first architecture, this
architecture presents a lower error detection latency, because
the query to the Bloom Filters can be done in parallel with the
TCAM lookup. The TCAM output is only used to select which
response of the Bloom Filter should be taken into account. The
drawback of this architecture is that undetected errors can be
caused both by hash collision, like in the previous architecture,
or when an erroneous entry (i.e. the response of a TCAM
affected by a SEU) and the correct one (i.e. the one stored
in the Bloom Filter set) have the same value modulo M . The
use of M = 16 or M = 32 allows us to reduce this aliasing
probability to 6% or 3%. 1 When no false positive occurs,
the set of Bloom Filters provides a one-hot encoded word as
output, while with the occurrence of a false positive in some
of the Bloom Filters that does not correspond to the requested
key, the output word has multiple bits to 1. If a false positive
occurs simultaneously with an error in the TCAM, the error is
undetected if the i index given by the modular operation selects
one of the Bloom Filters affected by the false positive.

Fig. 5. Modular detection approach.

The algorithm for error detection using the second architec-
ture is given in Fig. 6. First the algorithm checks if all the
Bloom Filters are 0. This correspond to the condition of a MISS
in the TCAM. If the TCAM gives MISS as a response, then
we assume that no error has occurred. Otherwise, if the TCAM
responds with an entry we assume that a pseudo HIT error
is occurred. Instead, if some of the Bloom Filters give 1 as a
response, we select the Bloom Filter with index i = entry
mod M and check if it is equal to 1. In this case we assume
that no errors have occurred, otherwise we signal the presence
of an error in the TCAM. This check condition also detects a
pseudo MISS in the TCAM (not shown in Fig. 6 for clarity),
since the MISS signal is not compatible with some BF (·) = 1.
The condition of BF (i) = 1 and i = entry mod M can also
be due to the concurrent occurrence of a false positive in the
Bloom Filter and to an error in the TCAM. The experimental
result shown in the next section prove that this is very unlikely.

1This effect can be totally eliminated using a suitable constraint in the
TCAM configuration. The key corresponding to the erroneous entry and the
key corresponding to the correct one differ for a maximum of t contiguous
bits, where t is the maximum length of a multiple bit upset. The constraint of
avoiding that these couples of keys have the same value of entry modulo M
can be easily fulfilled when M = 16 or M = 32.

Fig. 6. Algorithm for detection.

VI. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed meth-
ods, a set of simulations have been performed. A C++ software
model of TCAM and Bloom Filters has been designed and
both the TCAM and the Bloom Filters have been configured
using a real data set provided by Cisco Systems. Ten thousand
simulations were run where a fault was injected into the TCAM
for each run. The activation of the fault was determined by
comparing the output of the TCAM under test, with the output
from a golden TCAM. For the activated faults, the number of
faults detected by our architectures is reported. We compute
the overhead as the number of bits of storage in the Bloom
Filter with respect to the number of configuration bits of the
TCAM. This is a highly pessimistic, since the real silicon area
required to implement a TCAM cell is roughly twice the area
of an SRAM cell, since the TCAM cell also contains matching
logic [1]. We do not evaluate the logic required to implement
the hash function of the Bloom Filters, since it is composed
of only a modest number of XOR gates [17], and therefore is
negligible with repect to the area required for the memory. The
two architectures presented in the previous section have been
simulated, and the size of the Bloom Filters has been varied, in
order to study the impact of false positives on the efficiency of
the proposed methods. For the second architecture we limit our
analysis to M = 4, since the TCAM configuration being used
was too small to benefit from a larger value of M .

Size of one Error detected Error detected Total Error Total
BF (bits) by BF1 by BF2 coverage overhead

2K 2013 1307 100% 32%
1K 2332 1306 100% 16%
512 2343 1242 100% 8%
256 2068 1342 98.7% 4%
128 1911 1168 89.1% 2%

TABLE I
RESULTS OF FAULT INJECTION EXPERIMENTS FOR THE FIRST

ARCHITECTURE



The results reported in Table I show that the errors in the
TCAM are detected by one of the two Bloom Filters used in
the first architecture (BF1 checking value and BF2 checking
{key,entry}) . As expected, the set of errors detected by the
two Filters is disjoint, and the two Filters are able to detect
100% of injected faults when the size of the Bloom Filters
is sufficiently large. Even without considering that SRAM
memory cells are smaller than TCAM cells, the ratio 8% is less
than the nominal 12.5% overhead that would be required for
byte-wise parity. When the overhead is further reduced to 4%
or 2% the effect of false positives in the Bloom Filters produces
some undetected errors, decreasing the error coverage to 98.7%
and 89.1% respectively.

In Table II the results for the second architecture are reported.

size of one error total number Error Total
BF (bits) detected of errors Coverage overhead

1K 3211 3662 87.6% 32%
512 2908 3326 87.4% 16%
256 3010 3461 86.9% 8%
128 3130 3669 85.3% 4%
64 4276 3507 82% 2%

TABLE II
RESULTS OF FAULT INJECTION EXPERIMENTS FOR THE SECOND

ARCHITECTURE

As expected, even with a large Bloom Filter, the error cov-
erage is less than 100%, due to the aliasing of the modular
operation. However, the ratio of undetected error is less than
expected, (should be 25%, since M = 4), since the aliasing
does not occur when the fault inside the TCAM produces a
pseudo-HIT. In fact, in this case all the Bloom Filters give 0
as response,while the TCAM signals the presence of the key in
an erroneous entry. The condition that all BFs are equal to 0
allows detecting the error without any modular operation, and
therefore without the issue of aliasing. Aliasing still remains an
issue for multi-HIT errors [10]. When the size of the Filters
is sufficiently large, no false positives occur, and the error
coverage is slightly independent of the size of the Filters. It
can be noticed that the overheads have the same values of the
previous architecture, as expected.

When the overhead is further reduced to 4% or 2% the effect
of false positive in the Bloom Filters is less pronounced that in
the first architecture. A further analysis of the data for these
cases shows that with an overhead of 4%, the ratio of false
positive is 2%, to bits of the Bloom Filter set are set to 1 and
the other 2 bits are still 0. Therefore, the concurrent event of
a error in the TCAM and of a false positive, can be detected
with a 50% probability. Instead, with 2% overhead, the false
positive rate increases up to 30%, but only in few cases (about
3%) three bits are set to one, while for 27% only two bit are set
to one. This behavior allows us still to detect some errors even
if the Bloom Filters are affected by false positive.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a method for on-line error detection in
TCAMs. Unlike existing TCAM error detection techniques,

the proposed method does not require any modification to the
TCAM structure and can thus be added to an existing system.
Unlike approaches based on background scrubbing to identify
errors, the proposed technique identifies errors immediately
when the lookup is performed. in the TCAM, therefore allows a
low detection latency. The expansion of the don’t care bits in the
TCAM configuration has been managed by using a set of rules
that exploit the types of applications that rely on TCAMs. Based
on the application, different hash function are used to insert and
query the items in the Bloom Filters - an approach that is called
Application Aware Hashing. Two different architectures for
error detection have been proposed. The efficiency of the two
architectures has been evaluated with a real data set provided
by Cisco Systems. Extension to dynamically insert and evict
entries in the Bloom Filter is part of on-going work. Similarly
to the proposal of [9] the use of Counting Bloom Filters enables
the insertion and deletion of items in Bloom Filters. Techniques
to minimize the area overhead impact of implementing count-
ing Bloom Filters are also under investigation.

REFERENCES

[1] K. Pagiamtzis, A. Sheikholeslami, “Content Addressable Memory (CAM)
Circuits and Architectures: A Tutorial and Survey”, IEEE Journal of Solid-
State Circuits, vol. 41, n. 3, pp. 712–727, Mar. 2006.

[2] L. Chisvin, R. J. Duckworth, “Content-addressable and associative mem-
ory: alternatives to the ubiquitous RAM”, IEEE Computer, vol.22, no.7,
pp. 51–64, 1989.

[3] H.Chao, ”Next generation routers”, Proc. IEEE , vol. 90, no.9, pp. 1518–
1558, Sep. 2002.

[4] Cisco Catalyst 6500 Series Switches Data Sheet, available Online
[5] W.W. Peterson, E.J. Weldon, “Error-correcting codes”, The MIT Press,

1972.
[6] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, A. Salsano, “A Fault-

Tolerant Solid State Mass Memory for Space Applications,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 41, n. 4, pp. 1353–1372,
October 2005.

[7] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, A. Salsano “Data integrity
evaluations of Reed Solomon codes for storage systems, ” Defect and Fault
Tolerance in VLSI Systems, 2004. DFT 2004.

[8] N. Kanekawa, E. H. Ibe, T. Suga, Y. Uematsu, “Dependability in Elec-
tronic Systems: Mitigation of Hardware Failures, Soft Errors, and Electro-
Magnetic Disturbances,” ISBN 978-1-4419-6714-5, Springer Verlag, 2010.

[9] S. Pontarelli, M. Ottavi, Error Detection and Correction in Content Ad-
dressable Memories by Using Bloom Filters, accepted for publication on
IEEE Transactions on Computers.

[10] S. Pontarelli, M. Ottavi, A. Salsano, “Error Detection and Correction in
Content Addressable Memories”, in Proc. of the 25th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’10),
October 2010.

[11] B. Bloom. “Space/Time Tradeoffs in Hash Coding with Allowable Er-
rors”. Communication of ACM, no, 13, issue 7, pp. 422-426, 1970.

[12] K. Lakshminarayanan, A. Rangarajan and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” ACM SIGCOMM
Computer Communication Review, vol.35, no. 4, pp. 193-204, 2005.

[13] S. Dharmapurikar, P. Krishnamurthy and D.E. Taylor, “Longest prefix
matching using Bloom Filters,” IEEE/ACM Transactions on Networking,
vol.14, no. 2,pp. 397-409, 2006.

[14] N. Azizi, F. N. Najm, “A family of cells to reduce the soft-error-rate in
ternary-CAM,” Design Automation Conference, 2006 43rd ACM/IEEE,
pp. 779-784, 2006.

[15] S. Krishnan, R. Panigrahy, S. Parthasarathy, “Error-Correcting Codes for
Ternary Content Addressable Memories” IEEE Transactionson Comput-
ers, vol.58, no. 2, pp. 275-279, 2009.

[16] Wright et al, US Patent 7,254,748.
[17] M. V.Ramakrishna, E. Fu, E. Bahcekapili, “Efficient hardware hashing

functions for high performance computers” Computers, IEEE Transactions
on, Vol. 46 no. 12 pp:1378-1381, 1997.


